

Fundy Model Forest

~Partners in Sustainability~

Report Title: Water quality of the Canaan River, 1997, and its relationship to the water quality of Washademoak Lake.

Author: Rickard, R

Year of project: 2001

Principal contact information:

File Name: Soil_and_Water_2001_Pomeroy_ Water quality of the Canaan River, 1997, and its relationship to the water quality of Washademoak Lake.

The Fundy Model Forest... ...Partners in Sustainability

"The Fundy Model Forest (FMF) is a partnership of 38 organizations that are promoting sustainable forest management practices in the Acadian Forest region."

Atlantic Society of Fish and Wildlife Biologists Canadian Institute of Forestry **Canadian Forest Service** City of Moncton Conservation Council of New Brunswick Fisheries and Oceans Canada Indian and Northern Affairs Canada Eel Ground First Nation Elgin Eco Association **Elmhurst Outdoors Environment** Canada Fawcett Lumber Company Fundy Environmental Action Group Fundy National Park Greater Fundy Ecosystem Research Group INFOR. Inc. J.D. Irving, Limited KC Irving Chair for Sustainable Development Maritime College of Forest Technology NB Department of the Environment and Local Government NB Department of Natural Resources NB Federation of Naturalists New Brunswick Federation of Woodlot Owners NB Premier's Round Table on the Environment & Economy New Brunswick School District 2 New Brunswick School District 6 Nova Forest Alliance Petitcodiac Sportsman's Club Red Bank First Nation Remsoft Inc. Southern New Brunswick Wood Cooperative Limited Sussex and District Chamber of Commerce Sussex Fish and Game Association Town of Sussex Université de Moncton University of NB, Fredericton - Faculty of Forestry University of NB - Saint John Campus Village of Petitcodiac Washademoak Environmentalists

Water quality of the Canaan River, 1997, and its relationship to the water quality of Washademoak Lake.

March 2001

Acknowledgments

This report was prepared by Mr. Randy Rickard, Fredericton, New Bruswick. Funding was provided by the Fundy Model Forest. Dr. Alan Weatherley, Washademoak Environmentalists, and Ms. Jane Tims and Mr. Jerry Choate, New Brunswick Department of Environment and Local Government reviewed drafts of the report, and provided constructive criticism and editorial comments.

Funding for the study on which this report is based was obtained by the Washademoak Environmentalists from the Environmental Trust Fund.

Summary

Eight water quality surveys were conducted on the Canaan River and its tributaries between June 18 and November 11, 1997, by field officers of the New Brunswick Department of Environment and Local Government.

This purpose of these surveys was: to characterize the Canaan River water quality, in terms of the features of the watershed; to assess the effects of the Canaan River watershed conditions on the future of water quality of Washademoak Lake; and to provide baseline data of the Canaan River watershed prior to anticipated major highway and natural gas pipeline construction.

The water quality samples were analyzed for several chemical, physical, and bacterial parameters, including major ions, metals, dissolved oxygen, pH, and E.coli.

For the most part, the hardness of the water samples was very low $(0 - 30 \text{ mg/l} \text{ as Ca CO}_3)$, with the exception of Station 3, which had some values in excess of 100 mg/l. Water temperatures were recorded on October 15 only. At that time, temperatures ranged from 9.5°C to 11.5 °C along the length of the Canaan. The pH was generally in the high six to low seven range, which is considered near neutral. The exception was Station 3, which had values over eight. Conductivity tended to be in the range of 100 µsie/cm, with the exception again at Station 3 which was in the range of 300 µsie/cm. In all cases, dissolved oxygen values were acceptable for aquatic life.

Parameter values were compared to a set of water quality guidelines. For most parameters, there was a low frequency and magnitude of guideline exceedences. Spatial, rainfall, and land use trends were, in general, absent with the exception of Station 3.

For the most part, the Canaan River system appears to be a relatively stable system, but did show changes after rainfall. Due to the highly erodable soils, future development in the watershed, particularly in the lower regions of the Canaan River, has the potential to release large quantities of sediment into the watercourse, which could, over time, have an impact on the water quality of Washademoak Lake.

It is recommended that Best Management Practices (BMP) be implemented to address many of the water quality issues in the Canaan River watershed. The BMP's should address such items as access road construction, ditch clearing, site clearing, stream/river buffers, manure disposal, residential septic systems, etc. The BMP's should be a community-based initiative involving many of the stakeholders in the region to ensure widespread acceptance and adherence.

Disposal of manure should be planned so it does not precede forecasted rain events. As well, appropriate methods should be implemented to minimize potential run-off from manure-spread fields. Technical information on manure management is available from the New Brunswick Department of Agriculture, Fisheries, and Aquaculture.

To help to ensure that bacteria contamination is not being caused by domestic septic systems, the systems should be checked frequently to ensure that they comply with current operation and maintenance practices.

The source of the elevated levels of *E.coli* bacteria throughout the Canaan River watershed, and particularly in the upper undeveloped portion of the watershed, remains unknown and should be studied further in an attempt to determine the source(s) and significance.

Résumé

Huit relevés sur la qualité de l'eau de la rivière Canaan et de ses tributaires ont été effectués entre le 18 juin et le 11 novembre 1997 par des agents du ministère de l'Environnement et des Gouvernements locaux du Nouveau-Brunswick.

Les buts de ces relevés étaient les suivants : décrire la qualité de l'eau de la rivière Canaan, en fonction des caractéristiques du bassin hydrographique; évaluer les effets de l'état du bassin hydrographique de la rivière Canaan sur l'avenir de la qualité de l'eau du lac Washademoak; et fournir des données de base sur le bassin hydrographique de la rivière Canaan avant d'importants travaux de construction routière et l'aménagement de gazoducs de gaz naturel.

Les échantillons d'eau ont été analysés pour plusieurs paramètres chimiques, physiques et bactériens, y compris les ions importants, les métaux, l'oxygène dissous, le pH, et le E.coli.

En général, la dureté des échantillons d'eau était très faible (0-30 mg/L en CaCo₃), à l'exception de la Station 3 où quelques valeurs dépassaient 100 mg/L. La température de l'eau a été prise le 15 octobre seulement. À ce moment-là, les températures sur toute la longueur de la Canaan variaient entre 9,5 °C à 11,5 °C. Le pH se situait généralement entre six et sept, ce qui est perçu comme une valeur presque neutre. L'exception est la Station 3, où les valeurs dépassaient huit. La conductivité avait tendance à se chiffrer à peu près à 100 usie/cm, à l'exception encore de la Station 3 dont les valeurs étaient environ de 300 usie/cm. En ce qui concerne les valeurs d'oxygène, dans tous les cas, elles étaient acceptables pour la vie aquatique.

Les valeurs des paramètres ont été comparées à un ensemble de recommandations pour la qualité de l'eau. Les valeurs de la plupart des autres paramètres dépassaient rarement les recommandations. Les dépassements, le cas échéant, étaient d'une très faible importance. Les tendances géographiques, de chutes de pluie et d'utilisation du sol étaient, en général, absentes, à l'exception de la Station 3.

En principe, le réseau fluvial Canaan semble relativement stable, mais quelques changements se sont manifestés après des chutes de pluie. En raison du sol très susceptible à l'érosion, l'aménagement dans le bassin hydrographique à l'avenir, notamment dans les régions plus basses de la rivière Canaan, pourrait entraîner des déversements de grandes quantités de sédiments dans le cours d'eau, qui au cours des années aurait des répercussions sur la qualité de l'eau du lac Washademoak.

Il est recommandé que des Méthodes de gestion optimales soient appliquées afin de traiter certains problèmes de qualité de l'eau dans le bassin hydrographique. Ces méthodes devraient régler certains aspects comme la construction de voies d'accès, le nettoyage des fossés et du terrain, les zones tampons des rivières et des ruisseaux, l'élimination du fumier, les systèmes de fosses septiques, etc. Les Méthodes de gestion

optimales devraient être utilisées à l'échelle communautaire et faire intervenir de nombreux intervenants de la région pour assurer l'acceptation et le respect en général des méthodes.

L'élimination du fumier ne devrait pas être effectuée avant des chutes de pluie. En outre, des méthodes convenables devront être mises en œuvre afin de diminuer le risque d'écoulement provenant des champs recouverts de fumier. Des renseignements techniques sur la gestion du fumier sont disponibles au ministère de l'Agriculture, des Pêches et de l'Aquaculture.

Il faut vérifier les systèmes de fosses septiques souvent afin d'assurer qu'ils sont conformes aux normes d'exploitation et d'entretien actuelles et qu'ils ne causent pas de contamination bactérienne.

La source des niveaux élevés de la bactérie E. coli dans le bassin hydrographique de la rivière Canaan, et plus précisément dans la partie supérieure non aménagée, reste inconnue. Ce problème devra être étudié de façon plus approfondie afin de déterminer la source et son importance.

Table of Contents

Acknowledgment	ii
Summary	. iii
Résumé	v
List of Tablesvii	iiii
List of Figures	. ix
Introduction	1
Canaan River Watershed	3
Ecological Land Classification of Washademoak Lake – Canaan River Watershed	3
Landuse	6
Methods	7
Results	12
General water quality	12
Spatial Trends	
Effects of Rainfall and Surface Runoff on Water Quality	15
Water quality in relation to landuse	17
Discussion	62
Conclusions and Recommendations	63
References	65
ADDENDUM - Overview of Linear Construction Projects in relation to Canaan River	
and Washademoak Lake	66

List of Tables

Table 1. Canaan River watershed water quality sampling dates, 19977
Table 2. Water quality parameters measured in the Canaan River Watershed and
guideline levels9
Table 3. Water quality results (physical and chemical), Canaan River and tributaries,
1997
Table 4. Bacterial results, Canaan River and tributaries, 1997
Table 5. Summary statistics for chemical and physical parameters, grouped by baseline
and post rainfall results, Canaan River and tributaries, 1997
Table 6. Summary statistics for bacteria, grouped by baseline and post rainfall results,
Canaan River and tributaries, 199750
Table 7. Frequency distribution of results for parameters with guidelines, Canaan River
and tributaries, 1997
Table 8. Rainfall recorded at the New Brunswick Department of Natural Resources and
Energy station at Alward Brook, during the 1997 forest fire season
Table 9. Comparison of baseline and post rainfall values for selected parameters, Canaan
River and tributaries, 199756
Table 10. Location and effective drainage area for sampling stations, Canaan River and
tributaries, 1997
Table 11. Landuse in the Canaan River Watershed (Manley 1997)59

List of Figures

Figure 1. General location of Washademoak Lake - Canaan River watershed2
Figure 2. Sub-watersheds of Washademoak Lake - Canaan River drainage
Figure 3. Landuse, Canaan River watershed (148,092 ha), 1997
Figure 4. Location of water quality sampling stations for Canaan River watershed8
Figure 5. Hypothetical relationship between discharge, rainfall, and bacteria
concentration (NBDELG, report in preparation)
Figure 6. Colour values for all sampling stations, 18-June – 31-July, Canaan River and
tributaries, 1997
Figure 7. Colour values for all sampling stations, 04-Sept – 11-Nov, Canaan River and
tributaries, 1997
Figure 8. Colour values for each sampling date, $Stn 1 - 3$, Canaan River and tributaries,
1997
Figure 9. Colour values for each sampling date, $Stn 4 - 6$, Canaan River and tributaries,
1997
Figure 10. Colour values for each sampling date, Stn 7 – 9, Canaan River and tributaries,
1997
tributaries, 1997
Figure 12. Suspended solid values for all sampling stations, 18-June – 31- July, Canaan
River and tributaries, 1997
Figure 13. Suspended solid values for all sampling stations, 04-Sept. – 11-Nov, Canaan
River and tributaries, 1997
Figure 14. Suspended solid values for each sampling date, Stn $1 - 3$, Canaan River and
tributaries, 1997
Figure 15. Suspended solid values for each sampling date, $Stn 4 - 6$, Canaan River and
tributaries, 199723
Figure 16. Suspended solid values for each sampling date, $Stn 7 - 9$, Canaan River and
tributaries, 1997
Figure 17. Suspended solid values for each sampling date, Stn $10 - 11$, Canaan River
and tributaries, 1997
Figure 18. Turbidity values all sampling stations, 18-June – 31- July, Canaan River and
tributaries, 1997
Figure 19. Turbidity values for all sampling stations, 04-Sept – 11-Nov, Canaan River
and tributaries, 1997
Figure 20. Turbidity values for each sampling date, $Stn 1 - 3$, Canaan River and
tributaries, 1997
Figure 21. Turbidity values for each sampling date, Stn 4 – 6, Canaan River and
tributaries, 1997
Figure 22. Turbidity values for each sampling date, $Stn 7 - 9$, Canaan River and
tributaries, 1997
Figure 23. Turbidity values for each sampling date, Stn $10 - 11$, Canaan River and
tributaries, 1997
Figure 24. <i>E.coli</i> counts for all sampling stations, 18-June – 31- July, Canaan River and
tributaries, 1997
20

Figure 25. <i>E.coli</i> counts for all sampling stations, 04-Sept – 11-Nov, Canaan River and
tributaries, 1997
Figure 26. <i>E.coli</i> counts for each sampling date, Stn 1 – 3, Canaan River and tributaries, 1997
Figure 27. <i>E.coli</i> counts for each sampling date, Stn 4 – 6, Canaan River and tributaries,
1997
Figure 28. <i>E.coli</i> counts for each sampling date, Stn 7 – 9, Canaan River and tributaries, 1997
Figure 29. <i>E.coli</i> counts for each sampling date, Stn 10 – 11, Canaan River and
tributaries, 1997
Figure 30. Fecal Coliform counts for all sampling stations, 18-June – 31-July, Canaan
River and tributaries, 1997
Figure 31. Fecal Coliform counts for all sampling stations, 04-Sept – 11-Nov, Canaan
River and tributaries, 1997
Figure 32. Fecal coliform counts for each sampling date, Stn $1 - 3$, Canaan River and
tributaries, 1997
Figure 33. Fecal coliform counts for each sampling date, $Stn 4 - 6$, Canaan River and
tributaries, 1997
Figure 34. Fecal coliform counts for each sampling date, Stn $7 - 9$, Canaan River and
tributaries, 1997
Figure 35. Fecal coliform counts for each sampling date, Stn $10 - 11$, Canaan River and
tributaries, 1997
Figure 36. Mainstream median conductivity values for baseline samples, Canaan River
and tributaries, 1997
Figure 37. Mainstream median turbidity values for baseline samples, Canaan River and
tributaries, 1997
Figure 38. Landuse for Station 1 drainage area (41,436 ha), Canaan River and tributaries,
1997
Figure 39. Landuse for Station 2 drainage area (12,04 ha), Canaan River and tributaries,
1997
Figure 40. Landuse for Station 3 drainage area (8,613 ha), Canaan River and tributaries,
1997
Figure 41. Landuse for Station 4 drainage area (62,254 ha), Canaan River and
tributaries, 1997
Figure 42. Landuse for Station 5 drainage area (12,402 ha), Canaan River and
tributaries, 1997
Figure 43. Landuse for Station 6 drainage area (12,357 ha), Canaan River and
tributaries, 1997
Figure 44. Landuse for Station 7 drainage area (87,014 ha), Canaan River and
tributaries, 1997
Figure 45. Landuse for Station 8 drainage area (87,014 ha), Canaan River and
tributaries, 1997
Figure 46. Landuse for Station 9 drainage area (26,288 ha), Canaan River and
tributaries, 1997
Figure 47. Landuse for Station 10 drainage area (113,302 ha), Canaan River and
tributaries, 1997

Figure 48. Landuse for Station 11 drainage area (131,09 ha), Canaan River and	
tributaries, 1997	. 34
Figure 49. E.coli counts v. percent agricultural land for September 4, 1997 samples (for	or
all stations sampled), Canaan River and tributaries, 1997	. 35
Figure 50. E.coli counts v. percent agricultural land for September 4, 1997 samples (ne	ot
including Station 3), Canaan River and tributaries, 1997	. 35

Introduction

The Washademoak Lake – Canaan River watershed (Figure 1) is located on the western boundary of the Fundy Model Forest. The Canaan River watershed, which makes up approximately 68 percent of the total watershed, drains into Washademoak Lake, which in turn drains into the Saint John River.

In recent years, concerns have been expressed by a number of communities with respect to development – both residential and commercial – within the Canaan River watershed and its effect on the water quality of Washademoak Lake. Traditional land use in the watershed has changed considerably in the past fifty years, with many land parcels moving from family farms and small-scale woodlots to agribusiness and large scale industrial forest operations (Manley 1997). A considerable increase in the number of permanent and seasonal residences has occurred, particularly along the lakeshore, as well as associated recreational uses of both the land and the water.

A report entitled "Community–Based Investigation into the Current State and Functioning of the Washademoak Lake System and the Canaan River Watershed." (Manley 1997) discussed the water quality results of a study of Washademoak Lake in relation to the physical characteristics and activities (farming, forestry, roads, maintenance and building of residences) of its watershed. Work was begun in 1997 to determine the water quality of the Canaan River by means of a series of field collections and observations on the condition of its watershed. This study was intended to supply information that would permit the assessment of Canaan River conditions on the future of water quality in Washademoak Lake, of which the Canaan is the main tributary, and also to set a benchmark against which future changes in the Canaan watershed can be assessed.

The objectives of this report are as follows:

- 1. To characterize the Canaan River water quality, in terms of the features of the watershed.
- 2. To assess the effects of the Canaan River watershed conditions on the future of water quality of Washademoak Lake.
- 3. To provide baseline data of the Canaan River watershed prior to anticipated major highway and pipeline works.

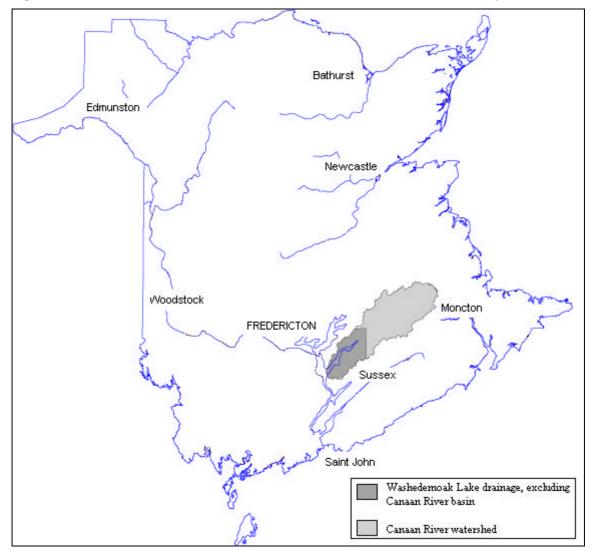


Figure 1. General location of Washademoak Lake - Canaan River watershed (Manley 1997)

Canaan River Watershed

The Washademoak Lake – Canaan River watershed, located in southern New Brunswick, occupies an area of approximately 216 000 hectares (ha). The watershed is contained within Westmorland, Kings, and Queens Counties, with the majority of the area being in Queens County. This watershed is composed of twenty-five sub-watersheds (Figure 2).

The Canaan River watershed (defined as the portion of the watershed from the upper reaches of the Canaan River to its eventual drainage into Washademoak Lake) has an area of 148 000 ha or approximately 68 percent of the total watershed and includes 17 sub-watersheds that range in size from 2 200 ha to 26 000 ha.

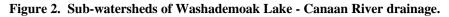
Ecological Land Classification of Washademoak Lake - Canaan River Watershed

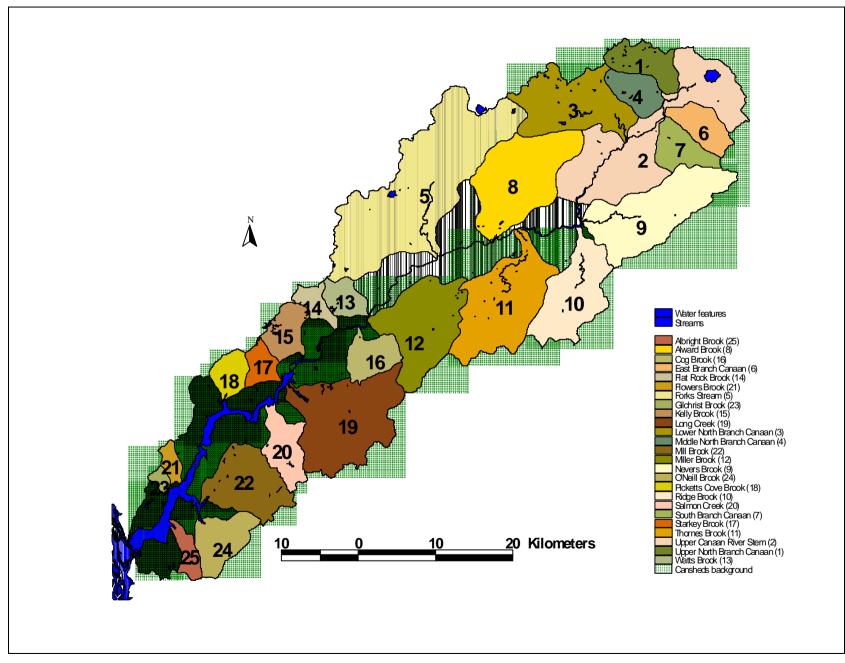
Three of seven ecoregions are represented within the Washademoak Lake–Canaan River watershed (DNRE 1996 & Manley 1997).

The southern edge (approximately 10 percent) is represented by the Continental Lowlands. This ecoregion is characterized by a broad, rolling terrain, with elevations around 100 metres. Because the ecoregion is sheltered from the influences of the sea, which partially surrounds New Brunswick, the climate is more of a continental type than a maritime type, with warm summer temperatures and cold winter temperatures.

The southwestern portion (approximately 45 percent) is represented by the Grand Lake basin. The ecoregion is characterized by a low-lying trough around Grand Lake. Elevations range from approximately 150m in the northern portions to just above sea level along the Saint John River flood plain. Temperatures in the area are strongly regulated due to the large inland body of Grand Lake, which acts as a heat sink. This results in the area having the warmest climate in the province.

The northeastern portion (approximately 45 percent) is represented by the Eastern Lowlands. The ecoregion is characterized by generally flat to gently rolling terrain. Elevations tend to range from sea level in coastal areas, rise to heights of approximately 150m in central parts, and then recede again in the direction of the Grand Lake Basin. The climate of the Eastern Lowlands tends to be regulated by the surrounding ecoregions. As a result, the area has the lowest precipitation levels in New Brunswick. The warm, dry summers of the ecoregion have resulted in the area having a history of forest fires, which is reflected by the abundance of jack pine and black spruce, both of which are fire-adapted tree species.


The next higher 'level of resolution' in ecological land classifications are ecodistricts (DNRE 1996). An ecodistrict captures the broad landforms within areas of homogeneous climate represented by the ecoregions. Three ecodistricts are represented within the Washademoak Lake – Canaan River watershed: Salmon River, Grand Lake, and Anagance Ridge.


The northeastern portion of the Canaan River watershed is located within the Salmon River ecodistrict. This ecodistrict contains soils that are poorly drained and of low inherent fertility. Soils tend to consist of red, fine textured (clay loam) compact soil overlying Carboniferous grey and red sandstone, mudstone, and conglomerate bedrock.

The southwestern portion of the watershed is located within the Grand Lake ecodistrict. Soils within this ecodistrict are similar to those in the Salmon River ecodistrict, though they tend to be better drained and thus more fertile. Bedrock is also similar. These moderately fertile soils, particularly the well-drained slopes in the southwestern portion of the ecodistrict are in use for agriculture, mostly horticultural crops.

A small portion of the watershed, along its southern edge, is within the Anagance Ridge ecodistrict. The bedrock consists of Carboniferous red conglomerate and sandstone, and a minor mudstone, overlain with deep, loam to sandy loam soils. Because of the conglomerate bedrock, the soils may contain many gravel types.

The soils and underlying bedrock in all three ecodistricts, when exposed, tend to be highly erodable, which can lead to soil loss and stream sedimentation, particularly after heavy rain events.

Land use

Much of the land use within the watershed has shifted from family farms and small-scale woodlot activities to agribusiness and large-scale industrial forestry (Manley 1997). As well, areas closest to the water's edge have become greatly sought after for permanent and seasonal residences. This shift has also created an increase in recreational use within the watershed.

Forested land, including regenerating and recent cutover areas, covers approximately 85 percent of the total landbase of the Canaan River watershed. Agricultural and other 'occupied' lands, including residential and commercial properties, cover approximately 3 percent, and wetland approximately 9 percent (Figure 3).

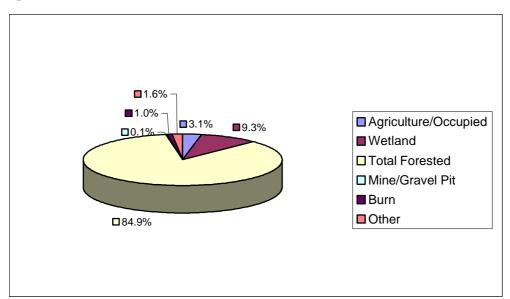


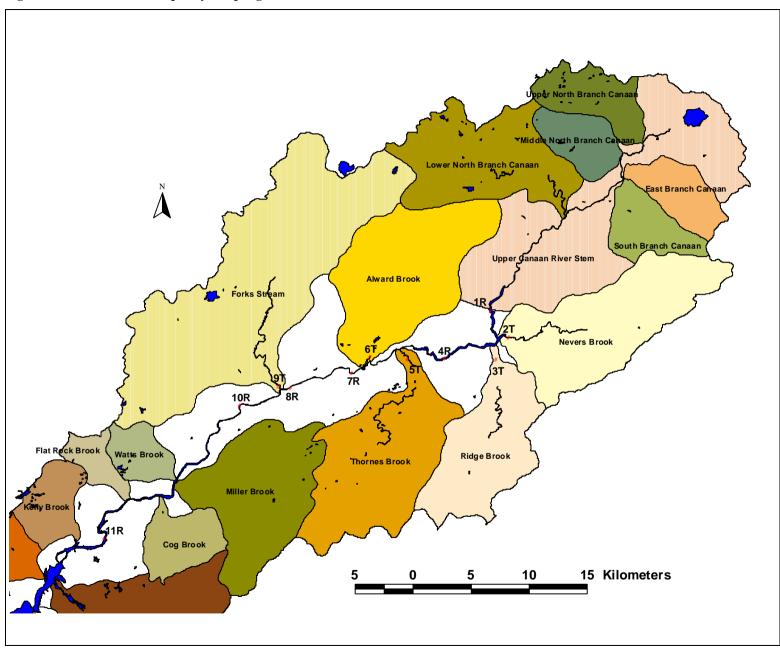
Figure 3. Land use, Canaan River watershed (148, 092 ha), 1997.

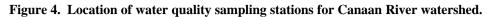
Associated with the increase in forest activities and residential and commercial construction is an increase in the number of access roads being constructed. Access roads that are constructed using the highly erodible native soils of the watershed may greatly contribute to sediment release into the watercourses. This sediment release affects the colour, turbidity, and quantity of suspended solids, and hence affects water quality.

Methods

Eleven sampling stations were established along the length of the Canaan River (Figure 4). Six of the sampling sites were located on the main stem of the Canaan River, while the remaining five were located on tributaries, near their confluence with the Canaan. Land use data for the Canaan River watershed were obtained from earlier work in the Washademoak Lake – Canaan River watershed (Manley 1997).

Eight water quality surveys were conducted between June 18 and November 11, 1997, by field officers of the New Brunswick Department of Environment and Local Government (NBDELG). The samples were collected according to established sampling protocols to ensure that they were representative of actual conditions. Of the surveys performed, four were considered post-precipitation event samples, which were originally intended to follow rain events with a total rainfall greater than 20 mm in a twenty-four hour period (Table 1). However, due to the dry summer and autumn conditions of 1997, two postprecipitation samples were taken when the total rainfall was less than 20 mm. For the rain event samples, field officers were informed of the occurrence of a 'rain event' by the New Brunswick Department of Natural Resources and Energy. Water samples from these events were collected within twenty-four hours of the field officers being advised of the event. It is important to note that field personnel had no way of knowing at which point in the run-off cycle samples were being collected. The rain event samples were collected on July 4, September 4, October 29, and November 11, 1997. In addition to the rain event samples, four to five baseline samples were collected during the abovementioned period for the majority of the stations.


Baseline sampling dates	Rain event sampling dates
18 June	04 July
31 July	04 September
22 September	29 October
15 October	11 November


Table 1. Canaan River watershed water quality sampling dates, 1997

All samples collected were delivered to the NBDELG laboratory in Fredericton, for analysis of physical and chemical properties, and bacterial counts. The resulting data were compared to the guidelines found in Table 2.

The guidelines indicate protection levels. Values at or below the guideline do not pose any immediate threat, whereas those above the guidelines begin to have effects, which become more severe as the concentration increases to lethality (J. Choate, pers. comm).

The water quality was compared for baseline and rain event data. As well, land use data were viewed in relation to water quality results in an attempt to explain the reasons for water quality differences between sub-watersheds.

Parameter	Description	Guideline ¹	Comment
Aluminum (Al)	Third most abundant element in the earth's crust	Should not exceed 0.005 mg/L in waters with a pH of 6.5 or less; should not exceed 0.1 mg/L in waters with a pH of greater than 6.5	Importance of pH to toxicity investigated only recently and significant gaps in knowledge remain
Grans Alkalinity (ALK-G)	Ability of water to neutralize an acid		2 – 10 mg/L indicates moderate sensitivity to acidification
Arsenic (As)	53 rd element in abundance in the earth's crust	50 µg/L	Invertebrates are generally more sensitive to arsenic than adult fish
Calcium (Ca)	An alkaline-earth metal, along with magnesium is primarily responsible for the hardness of water		Less than 15 mg/L is common in New Brunswick surface waters
Cadmium (Cd)	Usually present in water in trace quantities, highly toxic to humans and aquatic life	0.2 μ g/L in water with a hardness of 0 – 60 mg/L. 0.8 μ g/L where hardness is 61 – 120 mg/L.	
Chloride (Cl)	Major inorganic ion, in high concentrations is partial cause of salty taste in water.		
Colour (CLRA)	Colour imparted to water by natural minerals or vegetation.	100 units for recreational use.	
Conductivity (COND)	Indicates waters ability to conduct an electrical current, can be used to estimate total dissolved solids.		Normal range in NB fresh waters: $10 - 50 \ \mu sie/cm$.
Copper (Cu)	Essential for plant and animal nutrition in small amounts.	2.0 μ g/L in waters with a hardness of 0 – 120 mg/L, 3.0 μ g/L when hardness is 120 – 180 mg/L, and 4.0 μ g/L when hardness is greater than 180 mg/L.	
Chromium (Cr)	A blue-white, hard, brittle metal.	20 μ g/L to protect fish, 2.0 μ g/L to protect other aquatic life, including zooplankton and phytoplankton.	Generally present at low concentration in Canadian surface waters.
Fluoride (F)	17 th most abundant element in the earth's crust, a member of the halide family.	Drinking water guideline is 1.5 mg/L.	

Table 2. Water quality parameters measured in the Canaan River Watershed and guideline levels.

¹ Canadian Council of Ministers of the Environment. 1987. Canadian Water Quality Guidelines. Unless otherwise noted.

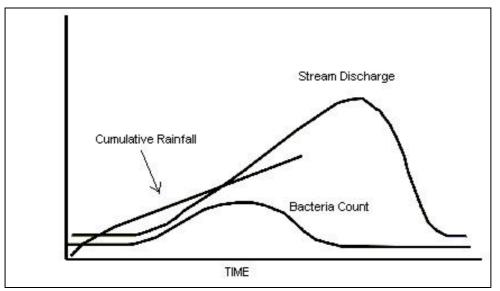
Table 2. (continued).

Parameter	Description	Guideline ³	Comment
Iron (Fe)	Fourth most abundant element in the earth's crust	Should not exceed 0.3 mg/L.	
Hardness (HARD)	Principally determined by the sum of calcium and magnesium.		0-30 mg/L : very soft 31-60 mg/L: soft 61-120 mg/L: moderately soft 121-180 mg/L: hard >180 mg/L: very hard
Potassium (K)	Alkali metal, essential for plant and animal nutrition.		Seldom 20 mg/L in natural surface waters, generally less than 10 mg/L.
Magnesium (Mg)	An alkaline-earth metal, one of the two main components of hardness.	Less than 50 mg/L recommended for drinking water.	
Manganese (Mn)	Often found in association with iron.		Tolerance values for freshwater aquatic life are reported to range from 1.5 to 1000 mg/L.
Sodium (Na)	Major inorganic ion, in high concentrations and in combination with chloride can cause salty taste in water.	20 mg/L in drinking water of individuals on sodium restricted diets.	
Total Ammonia (NH ₃ T)	Reduced inorganic form of nitrogen.	Varies with temperature and pH; at pH of 6.75 and temperature of 15°C, guideline is 2.2 mg/L.	
Total Kjeldahl Nitrogen (TKN)	Sum of both ammonia and organic nitrogen.		0.1 to 0.5 mg/L is normal environmental range.
Nitrate & Nitrite (NOx)	Inorganic form of nitrogen, major nutrient for aquatic vegetation.	Less than 10 mg/L in drinking water.	Greater than 5 mg/L <u>may</u> reflect unsanitary conditions.
Nickel (Ni)	Silver-grey metal, ductile, malleable, and tough.	25 μg/L at hardness 0-60 mg/L 65 μg/L at hardness 60-120 mg/L 110 μg/L at hardness 120-180 mg/L 150 μg/L at hardness >180 mg/L	
Lead (Pb)	Ubiquitous in the natural environment	Should not exceed 1.0 µg/L in waters with a hardness of 0-60 mg/L	
pH (pH)	Index of hydrogen ion concentration, 7 indicates neutral, less than 7 acidic, greater than 7 alkaline.	6.5 – 9.0	
Sulfate (SO ₄)	Oxidized form of sulfur.	Less than 150 mg/L for drinking water.	
Suspended Solids (SS)	A measure of material suspended in the water column.	Should not exceed 10 mg/L.	

Table 2. (continued).

Parameter	Description	Guideline ³	Comment
Total Organic Carbon (TOC)	Carbon is required for biological processes, decomposition of carbon compounds removes oxygen from water.	15 mg/L (represents the upper end of values detected in natural surface waters in NB).	Greater than 15 mg/L may reflect unsanitary conditions.
Total Phosphorus (TP)	Essential plant nutrient may stimulate algal growth.	0.02 mg/L average for ice-free period in lakes to avoid nuisance concentrations of algae (0.01 mg/L provides a high level of protection); less than 0.03 mg/L for rivers and streams. ¹	Index of maximum concentrations is: 0.10 mg/L in flowing water, 0.05 mg/L for water flowing into lakes and reservoirs and 0.025 mg/L in lakes and reservoirs.
Turbidity (TURB)	Optical measure of suspended particles in water.	For recreational use should not increase by more than 5.0 NTU (nephelometric turbidity units) over natural turbidity when turbidity is low (<50 NTU).	Noted any results exceeding 10.0 NTU, as increases could not be determined.
Zinc (Zn)	Essential for plants and animals, relatively non-toxic to humans but toxic to aquatic organisms.	Should not exceed 30.0 µg/L.	
Dissolved Oxygen (DO)	Necessary for respiration in aerobic organisms.	Should be no less than 5.0 mg/L for protection of fish.	
Fecal Coliform Bacteria (FC)	A group of bacteria found in the intestines of humans and warm blooded animals and present in their feces.	For body contact recreation, geometric mean of at least 5 samples taken over a 30 day period should be less than 200 / 100 ml.	For report, FC bacteria were used a water quality indicators and results exceeding 200 / 100 ml were noted instead of using geometric mean.
Escherichia coli (E.coli)	A bacterium formed in the intestines of humans and warm blooded animals and present in their feces.	For body contact recreation, geometric mean of at least 5 samples taken over a 30 day period should be less than 200 / 100 ml.	For report, <i>E.coli</i> bacteria were used a water quality indicators and results exceeding 200 / 100 ml were noted instead of using geometric mean.
Temperature (TEMP)	Affects physical, biological, and chemical processes in the aquatic environment.	The natural thermal regime should not be altered so as to impair the quality of the natural environment. The diversity, distribution and abundance of plant and animal life should not be significantly changed. ⁴	Optimum temperature for brook trout are between 15 and 20 °C. ²

¹ Ontario Ministry of Environment and Energy (1994) ² International Technical Advisory Subcommittee on Water Quality in the Saint John river (1980)


Results

Duplicate samples were collected and analyzed to ensure reproducibility. For the physical and chemical parameters, this was done on July 4 at stations 10 and 11. For the bacteria, four samples were usually collected and analyzed for each station during each sampling date.

Results for duplicate samples were similar for most parameters, providing some indication that the data were reliable (Table 3). Greater variations were noted for duplicate copper and iron results, indicating that the results for these two parameters may be less reliable. As expected, there was considerable variation in replicate bacteria samples (Table 4), however large variations for total coliform only occurred in one instance and for *E.coli* in two instances. All replicate fecal coliform results showed reasonable agreement.

As mentioned previously, field personnel were unable to determine the stage of the runoff cycle at the time of sampling. Since water quality may change a great deal over the course of a rainfall event (Figure 5), caution must be exercised when interpreting data, particularly when comparing results for specific stations and / or dates. Thus, conclusions drawn from the data must be tempered by the fact that measurements could have been much different had the samples been taken at another time. This is less of a problem when measuring baseline conditions.

Figure 5. Hypothetical relationship between discharge, rainfall, and bacteria concentration (NBDELG, report in preparation).

General water quality

For the most part, the hardness of the water samples was very low $(0 - 30 \text{ mg/l} \text{ as Ca} \text{ CO}_3)$, with the exception of Station 3, which had some values in excess of 100 mg/l. Water temperatures were recorded on October 15 only. At that time, temperatures ranged from 9.5°C to 11.5 °C along the length of the Canaan. The pH was generally in the high

six to low seven range, which is considered near neutral. The exception was Station 3, which had values over eight. Conductivity tended to be in the range of 100 μ sie/cm, with the exception again at Station 3 which was in the range of 300 μ sie/cm.

Provided in Tables 3 and 4 are the laboratory results for the individual measurements of all chemical, physical, and bacterial parameters for both baseline and event sampling, while Tables 5 and 6 provide summary statistics (mean, median, and standard deviation) of the parameters measurements.

The frequency distribution of the parameters in comparison to the guidelines in Table 2 are shown in Table 7. Ammonia, arsenic, cadmium, fluoride, magnesium, nickel, nitrite, nitrite-nitrate (NOx), and sulfate values were all less than the prescribed protection guidelines. Many of these parameters had values that fell below established laboratory detection limits, and were of no consequence.

Dissolved oxygen was acceptable in all cases.

Thirty-five percent of the chromium results were below detection. Sixty-one percent were below the 2.0 μ g/l guideline, while the remaining four percent slightly exceeded the guideline (Station 3). The maximum chromium value was 3.6 μ g/l (Station 3), which is higher than the guideline for the protection of all aquatic life (2.0 μ g/l), but well below the second guideline of 20 μ g/l established for the protection of freshwater fish.

Ninety-nine percent of the copper values were below the 2.0 μ g/l guideline, while the remaining one percent slightly exceeded the guideline (Station 11).

Ninety-eight percent of the lead values fell below the 1.0 μ g/l guideline. The remaining two percent slightly exceeded the guideline (Stations 1 and 3). The maximum value recorded was 2.4 μ g/l (Station 3).

Ninety-nine percent of the zinc results were below the 0.03 mg/l guideline, while one percent slightly exceeded the guideline (Station 10).

Seventy-three percent (58 of 80) of the samples tested for aluminum concentrations exceeded the 100 μ g/l guideline (all stations but Station 7). Of the samples exceeding the guideline, forty-one percent (24 of 58) had concentrations between 100 and 200 μ g/l; thirty-one percent (18 of 58) were between 200 and 300 μ g/l, while the remaining twenty-eight percent (16 of 58) were in excess of 300 μ g/l.

Eighty-five percent (68 of 80) of the samples tested for iron concentration exceeded the 0.3 mg/l guideline (all stations). Of the samples exceeding the guideline, twenty-one percent (14 of 68) slightly exceeded the guideline (greater than 0.3 mg/l, but less than 0.5 mg/l), seventy-three percent (50 of 68) were between 0.51 mg/l and 1.0 mg/l, while the remaining six percent (4 of 68) were in excess of 1.0 mg/l.

For the most part, all metals were below guidelines, with the exception of aluminum and iron. The values for aluminum and iron, though exceeding the guidelines, exhibit similar characteristics to other surface waters in New Brunswick (J. Choate, per comm).

Nine percent of the pH readings were below the guideline range of 6.5 to 9.5 (Stations 1, 6, and 9). The lowest result was 5.62 (Station 6). Although slightly acidic waters are not, in themselves, necessarily harmful to aquatic biota, the effect they may have on other parameters are a source of concern, e.g. when the pH of water decreases, the toxicity of aluminum to aquatic life increases. However, the low incidence of values that were less than the guidelines is probably of little concern.

Ninety-four percent of the total phosphorous values were less than the 0.03 mg/l guideline value, while the remaining six percent were slightly in excess of the guideline (Stations 1, 3, 4, and 9). The maximum value recorded was 0.12 mg/l (Station 3).

New Brunswick waters usually have low concentrations of total organic carbon (TOC) (less than 15 mg/l). Of the 78 samples tested for TOC, 29 (37 percent) were in excess of 15 mg/l (all but Stations 5 and 7), with the maximum value being 23 mg/l (Station 12).

Thirty-four percent (27 of 80 samples) of samples exceeded the recreational guideline for colour (all but Stations 5 and 7) (Figures 6 - 11). Of the samples exceeding the guideline, eighty-one percent (22 samples) had values between 100 and 200 TCU, while the remaining nineteen percent (5 samples) were in excess of 200 TCU (Stations 1, 9, and 10).

Fifteen percent (12 of 80) of the samples measured for suspended solids exceeded the 10 mg/l guideline (all but Stations 6, 7, and 9) (Figures 12 - 17). Of these 12 samples, 8 (67 percent) had concentrations between 21 and 30 mg/l, while the remaining 4 (33 percent) were in excess of 40 mg/l. The maximum value recorded was 150 mg/l (Station 3).

Ninety-six percent of turbidity values were below the 10 Nephelometric turbidity unit (NTU) guideline (Figures 18 - 23), while the remaining four percent were slightly above, with the maximum value being 21.2 NTU (Stations 1, 3, and 6).

Escherichia coli (*E.coli*) and fecal coliform bacteria do not directly affect aquatic biota, but indicate the degree of contamination by animal and or human waste, and are important from a public health standpoint. Significant levels of bacteria (fecal coliform and *E.coli*) were present at various locations and times. The guideline used was 200 counts per 100 ml for both *E.coli* and fecal coliform (Table 2). Twenty-eight percent (19 of 69) of the samples tested for *E.coli* exceeded the guideline (all stations but 7, 9, and 11) (Figures 24 - 29). Of these 19 samples, 10 (53 percent) had counts in excess of 1000 per 100 ml, with the maximum value being greater than 2419 counts per 100 ml (Stations 3 and 10). Nineteen percent (13 of 69) of fecal coliform measurements were in excess of the guideline (all stations but 7, 9, and 11) (Figures 30 - 35). Of the 13 samples, the maximum measurement recorded was 344 counts per 100 ml (Station 6).

The low frequency and magnitude of exceedences of the guidelines indicate that the Canaan River system is generally suited to aquatic life. Occasional exceedences of bacteria guideline values may indicate some impairment of the Canaan River system for recreational use. Some of the exceedences in the guidelines were due to rainfall events and land use, which will be discussed in other sections.

Spatial Trends

Median conductivity and turbidity measured on the main river during baseline conditions were used to indicate the overall change in water quality along the length of the Canaan River (Figures 36 and 37). Median conductivity remained somewhat constant along the length of the Canaan, though the values at Stations 3, 4, and 7 were higher than the others (Table 5). Median turbidity values remained relatively constant throughout the mainstem. Perusal of data for other parameters also indicated relatively constant conditions.

Water quality at Station 3 differed from the other stations both on the main river and tributaries. Hardness, alkalinity, conductivity, fluoride, sulfate, and pH were noticeably higher than at any of the other stations (Tables 3 and 5). Station 3 is influenced by a large percentage of agricultural and occupied land (twenty five percent) in its drainage (Figure 37), which may account for the high levels of bacteria which were also recorded (Table 4 and 6). As well, one of the main geological features of the area is a large limestone deposit, which supports a quarry operation at a commercial level. This probably had a noticeable effect on the hardness, alkalinity, and pH. Additionally, the village of Havelock, which is the most populated community within the Canaan River watershed is located within the drainage area represented by Station 3.

Station 11, at Canaan Rapids, is the most downstream station on the Canaan. Values recorded at Station 11 were generally consistent with those recorded at the mainstream stations along the length of the Canaan (Table 3 and 4). This station has been used in the past for water quality sampling. Most recently, data for this station were used in a study which resulted in a report: "Community–Based Investigation into the Current State and Functioning of the Washademoak Lake System and the Canaan River Watershed." (Manley 1997). Comparison of the Station 11 baseline values with the results for July to October 1996 showed little difference between the two years (Table 3).

Effects of Rainfall and Surface Runoff on Water Quality

Some parameter values showed major increases following rain events, while others declined.

Major rainfall events (>20 mm) were recorded at a weather observation station at Alward Brook on July 4 (\sim 38mm) and September 4 (\sim 22mm) (Table 8). A perusal of the water quality data indicated that several parameters were near or below detection regardless of rainfall, and they were not considered further.

Of the remaining parameters, conductivity, hardness, and pH tended to decrease following a rain event, while others tended to increase (Table 9). Colour, suspended

solids, turbidity, fecal coliform, and, notably, *E.coli* often increased to the point of exceeding the guidelines (Figures 6 - 35). It is likely that the decreases resulted from dilution of the groundwater component of the stream flow by surface water which contained less dissolved matter and was also probably lower in pH than the groundwater. The acidity of the rain may have also contributed to the decline in pH. It is probable that the increases resulted from overland flow transporting significant amounts of soil, organic matter, and bacteria to the watercourse early in the event, before dilution could reduce concentrations (Figure 4).

Colour, suspended solids, and turbidity tended to increase dramatically following the July 4 rain event, but changes for the September 4 event were not as dramatic. The reasons for this difference are not known.

Bacteria were not measured on July 4 due to logistical problems of getting samples to the laboratory within the specified time period. In general, bacteria (*E.coli* and fecal coliform) showed the largest increase on September 4, with lesser increases noted on September 22 and October 29 (Figures 24 - 35). The latter two increases were likely due to rainfall that occurred prior to sampling, but was not in sufficiently large amounts to be considered rainfall events (Table 8). *E.coli* values were, at times, in excess of the guideline, exceeding it by up to twelve times (Figures 24 to 29). *E.coli* measurements had an upper detection limit of 2419 counts per 100 ml of water. Values that exceeded this limit were recorded as greater than 2419 counts per 100 ml. For this reason, the actual maximum bacteria count is not known.

This increase may be attributable to manure spreading on agricultural fields in late summer to late autumn. Prior to the September 4 sample, approximately 23 mm of rain fell in the watershed area. If manure spreading occurred prior to this rain event, it is reasonable to expect that the *E.coli* bacteria would be transported into the watercourse.

Unlike the other stations, Station 11 did not show a large increase in *E.coli* and fecal coliform following the September 4 rain event (Figures 24 - 35). This may have been attributable to a combination of dilution and die-off. Station 9, likewise, did not exhibit an increase after rainfall. Immediately upstream of Station 11 was a large, seasonal trailer park / campground. The grounds were essentially a wide-open, grassy field that was cleared to the water's edge. This large area may have contributed to the sedimentation of the Canaan River, as overland flow may have transported loose soil particles into the water course, which would otherwise be trapped by vegetation had a riparian strip been established. Additionally, the park collected its domestic waste in an aerated waste pond. If the pipe network or the waste pond had undetected deficiencies, contamination of the Canaan by human waste was possible. However, water quality measured at this station was generally good, which would indicate that the campground had little effect on the parameter values.

Conductivity tended to decrease after rainfall. The largest decreases occurred at Stations 1 and 3 (Table 8), where declines of approximately 60µsie/cm and 700 µsie/cm were recorded for Station 1 on July 4 and September 4, respectively. Reductions of 200

 μ sie/cm and 100 μ sie/cm were noted for Station 3. The other stations saw decreases of approximately 2 μ sie/cm to 50 μ sie/cm. Hardness showed the same general pattern as conductivity. Similarly, pH showed the same general pattern, though a large change also occurred at Station 6 on July 4.

Aluminum, iron, and manganese all tended to increase following rainfall events (Table 8). These metals are found naturally as a component of the soil and may be transported to a watercourse by surface runoff. Because they are a component of the soil, they also tend to show up with increases in suspended solids.

Nitrogen (as NOx) and total phosphorous tended to increase following rain events. These increases could have resulted from agricultural and forestry activities, faulty individual sewage treatment systems, and other land use practices. Total organic carbon also generally increased following rainfall due to surface runoff carrying organic matter to watercourses.

Water quality in relation to land use

Land use data for the sampling station drainage area are given in Figures 38 - 45 and Tables 10 and 11.

The data indicated that Station 3 differed from all other stations. Values for hardness, alkalinity, chloride, and conductivity increased at Station 3 (Table 3). These increases were probably related to the limestone bedrock in the area. The hardness, alkalinity, and conductivity suggest a higher pH, which was the case at this station.

The increased sulfate (SO_4) measured for Station 3 was also likely related to the type of bedrock in the area. Similarly, the low occurrence of aluminum and iron was probably related to the localized soil and bedrock conditions of the sub-watershed.

Chromium is known to be used in explosives and some fertilizers (CCME 1987), and therefore could have resulted from either agricultural and or mining activities in the area. In addition to the quarry activities, the drainage for this station contained the greatest portion of agricultural and occupied lands of any of the sub-drainages in the watershed (Table 11 and Figure 40).

Low colour values for Station 3 were likely due to low iron content and lesser leaching of organics due to higher pH. Additionally, organic carbon (TOC) values were also probably lower due to a lesser rate of leaching.

Baseline phosphorous and turbidity values were generally low. Phosphorous values, after rain events, increased to a greater extent at Station 3 than at the other stations. This may have resulted from higher amounts of agricultural and occupied lands in this sub-watershed (Table 11 and Figure 40).

Because of a high percentage of agricultural and occupied land at Station 3, turbidity would also be expected to increase significantly. However, turbidity did not show the

same increase after a rain event when compared to the other stations. The reason for this is not known.

Aluminum, colour, iron, and organic carbon results for Station 5 were similar to those at Station 3. However, the results for the other chemical and physical parameters were more similar to the remaining stations. Land use in the drainage for this station was considerably different from Station 3 (Figures 38 and 42). The greatest difference was in agriculture and occupied land which only made up four percent (approximately 525 hectares) of the drainage as opposed to twenty-five percent (approximately 2200 hectares) for Station 3 (Table 11). The two subwatersheds are adjacent to each other, and possibly some of the similarities in water quality were related to certain commonalties in soil and bedrock.

Stations 1, 6, and 9 all had lower hardness, alkalinity, and pH values than the remaining stations. The wetland percentages in the drainage of these stations were all much higher than those for the other stations, with values of seventeen, eight, and eight percent, respectively (Table 11 and Figures 38, 43, and 46). Most of the wetlands in these areas are acidic bogs (J. Choate per comm), which would explain the reduced values for these three parameters. The remaining six stations had values similar to each other, which would indicate that they represent normal conditions.

Compared to total coliform and fecal coliform, *E.coli* measurements are considered the best indicator of fecal contamination.

Recognizing the high degree of variability that can occur in bacteria populations, baseline values for *E.coli* were judged essentially similar at all stations. *E.coli* values were elevated at Stations 3 and 6 for the June 18 samples (Table 4), however, no significant prior rainfall took place and subsequent values during baseline periods were low. Thus, these higher values do not indicate a continuous bacteria source.

Major increases in *E.coli* occurred on September 4 (~22 mm of rain on the previous day). All *E.coli* measurements exceeded 1000 counts/100 ml except at Stations 9 and 11, which, as previously mentioned, did not show significant increases. Most of the high values were in the range of 1000 to 2000 counts/100 ml, but at Station 3 and 10 the values exceeded 2419 counts/100 ml. The increase at Station 3 can be explained by the high percentage of agricultural and occupied land. The reason for the high counts at Station 10 is not known. However, the increase on October 29 (prior rainfall amount is not known) at Station 10 was similar to the other stations.

The increase at Station 3 was again greater than at the other stations on October 29, indicating a greater likelihood of an actual difference at this station. Thus, rainfall is considered to have a greater effect on Station 3 than on the others.

The increased bacterial counts at Station 1 were unexpected since the drainage area represented by this station has little development with only 0.2 percent of the land area classified as agricultural and occupied (Table 11). The cause of this is unknown and

could be the subject of further investigation. Baseline bacteria values were as expected for a relatively undeveloped area.

Two regressions were done to determine whether the *E.coli* counts for September 4 were related to the percent of agricultural land in each sub basin. For the first regression, all of the *E.coli* data were used. Data for Station 3 were removed before calculating the second regression due to the large percentage of agricultural land (twenty-five percent) in the sub basin compared to the others. Both regressions (Figures 49 and 50) showed weak linear trends (R^2 of 0.26 and 0.23, respectively), suggesting that the area of agricultural land influenced the degree of *E.coli* bacteria contamination. Had more samples been collected, a stronger relationship might have been detected. Moreover, a stronger trend might have been indicated if information on the location and type of agriculture and land use practices were available and could have been incorporated into a multiple regression.

The highest suspended sediment value (150 mg/l) was recorded at Station 3 following the July 4 rain event. The increase was approximately 100 times normal baseline values. Given the high percentage of agricultural land (Figure 40), as well as soils that are highly susceptible to erosion, this result is not surprising. However, Station 3 drains a relatively small area (~ 8600 hectare), which may explain the lack of significant effect on the downstream stations – Station 4 had a suspended solids value of 60 mg/l, while further downstream at Station 8 the value was 20 mg/l. Had Station 3 drained a larger area, a greater downstream effect could be expected.

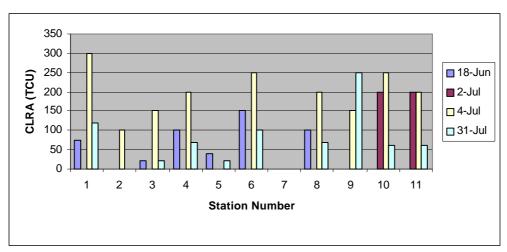
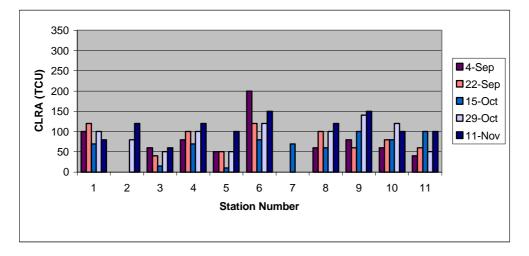



Figure 6. Colour values for all sampling stations, 18-June – 31-July, Canaan River and tributaries, 1997.

Figure 7. Colour values for all sampling stations, 04-Sept – 11-Nov, Canaan River and tributaries, 1997.

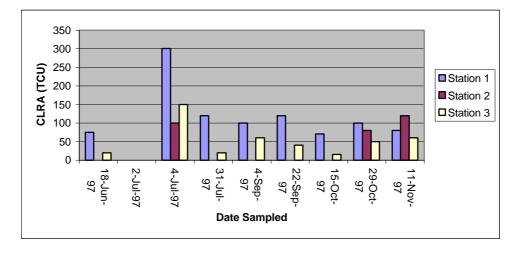
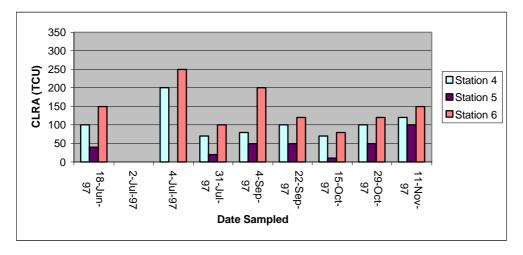
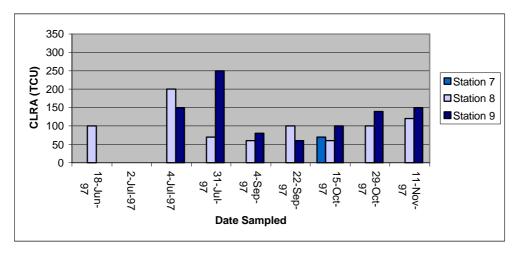
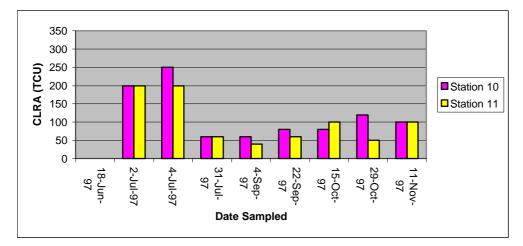


Figure 8. Colour values for each sampling date, Stn 1 – 3, Canaan River and tributaries, 1997.

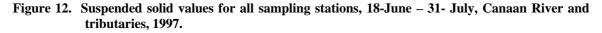

Figure 9. Colour values for each sampling date, Stn 4 – 6, Canaan River and tributaries, 1997.

Figure 10. Colour values for each sampling date, Stn 7 – 9, Canaan River and tributaries, 1997.

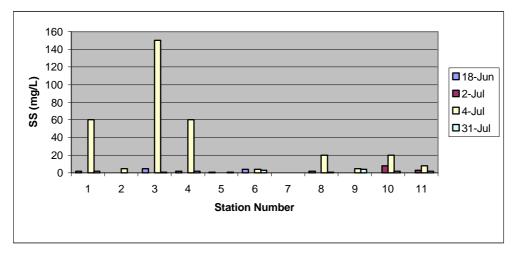


Figure 13. Suspended solid values for all sampling stations, 04-Sept. – 11-Nov, Canaan River and tributaries, 1997.

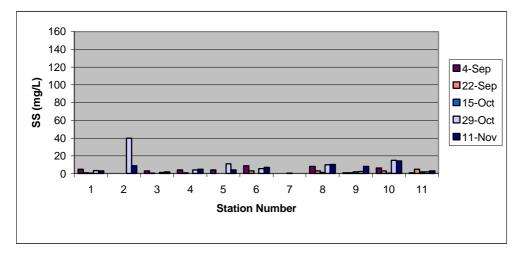
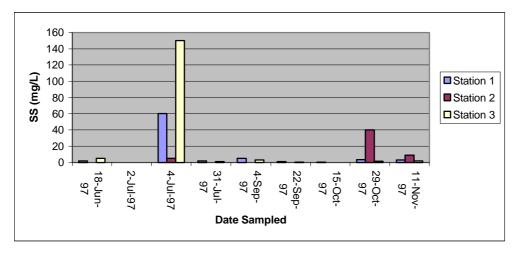



Figure 14. Suspended solid values for each sampling date, Stn 1 – 3, Canaan River and tributaries, 1997.

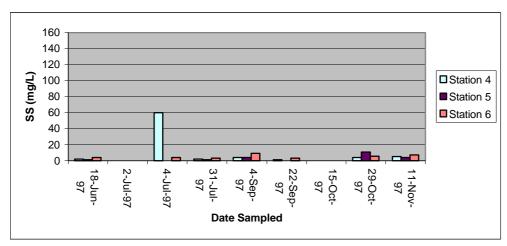


Figure 15. Suspended solid values for each sampling date, Stn 4 – 6, Canaan River and tributaries, 1997.

Figure 16. Suspended solid values for each sampling date, Stn 7 – 9, Canaan River and tributaries, 1997.

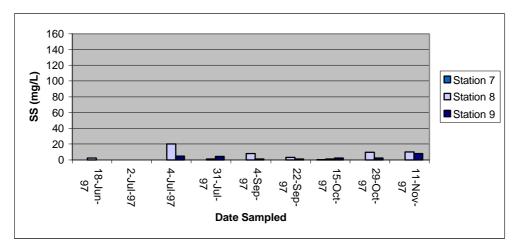
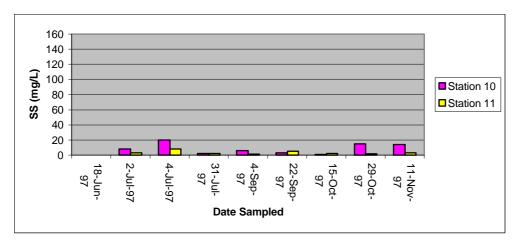



Figure 17. Suspended solid values for each sampling date, Stn 10 – 11, Canaan River and tributaries, 1997.

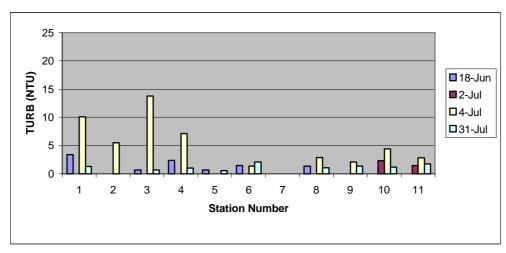
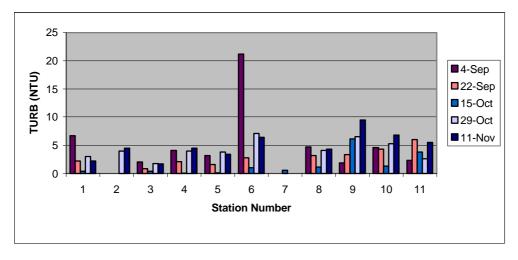



Figure 18. Turbidity values all sampling stations, 18-June – 31- July, Canaan River and tributaries, 1997.

Figure 19. Turbidity values for all sampling stations, 04-Sept – 11-Nov, Canaan River and tributaries, 1997.

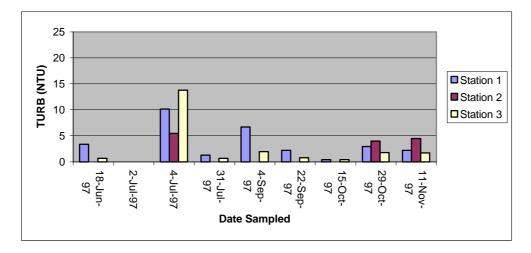


Figure 20. Turbidity values for each sampling date, Stn 1 – 3, Canaan River and tributaries, 1997.

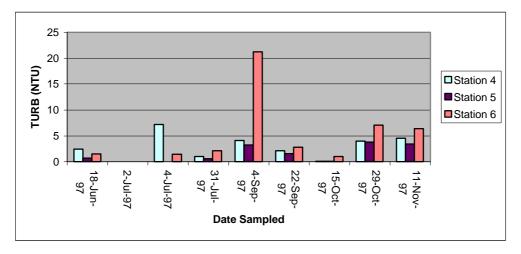


Figure 21. Turbidity values for each sampling date, Stn 4 – 6, Canaan River and tributaries, 1997.

Figure 22. Turbidity values for each sampling date, Stn 7 – 9, Canaan River and tributaries, 1997.

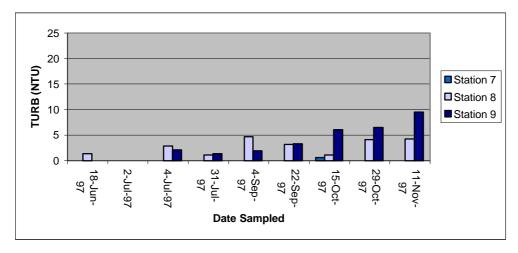
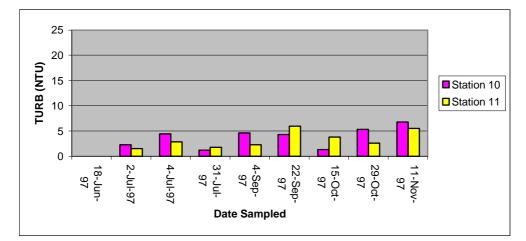



Figure 23. Turbidity values for each sampling date, Stn 10 – 11, Canaan River and tributaries, 1997.

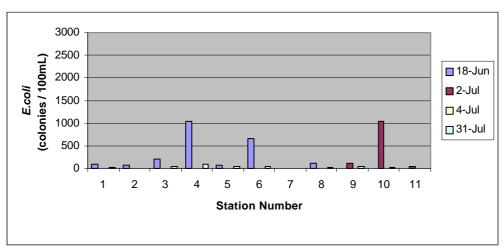
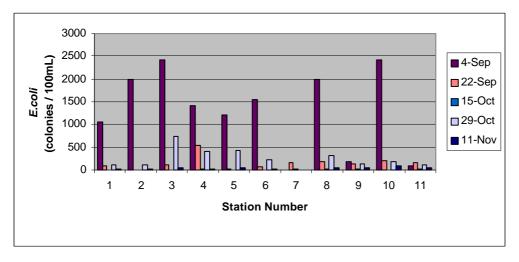



Figure 24. *E.coli* counts for all sampling stations, 18-June – 31- July, Canaan River and tributaries, 1997.

Figure 25. *E.coli* counts for all sampling stations, 04-Sept – 11-Nov, Canaan River and tributaries, 1997.

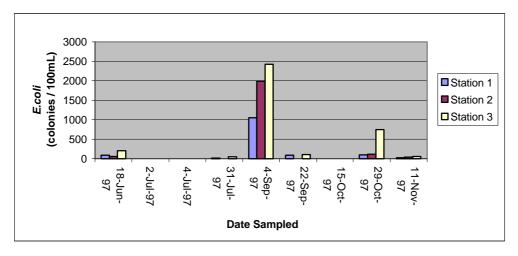


Figure 26. *E.coli* counts for each sampling date, Stn 1 – 3, Canaan River and tributaries, 1997.

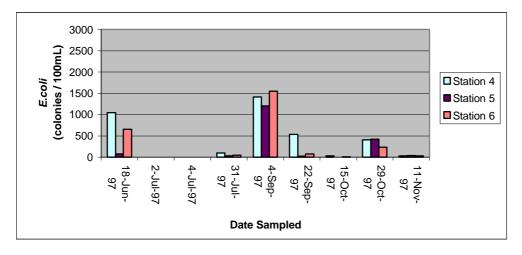


Figure 27. E.coli counts for each sampling date, Stn 4 – 6, Canaan River and tributaries, 1997.

Figure 28. E.coli counts for each sampling date, Stn 7 – 9, Canaan River and tributaries, 1997.

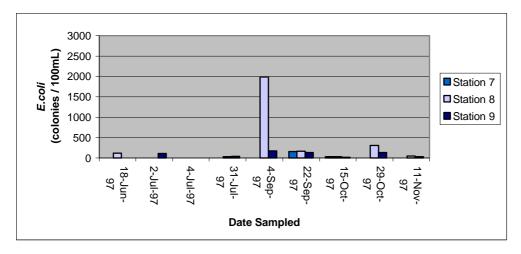
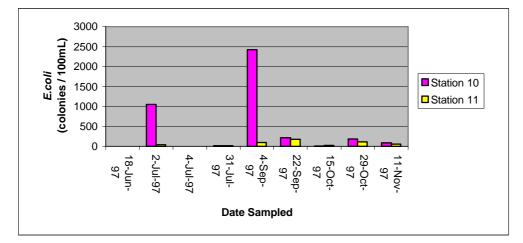



Figure 29. E.coli counts for each sampling date, Stn 10 – 11, Canaan River and tributaries, 1997.

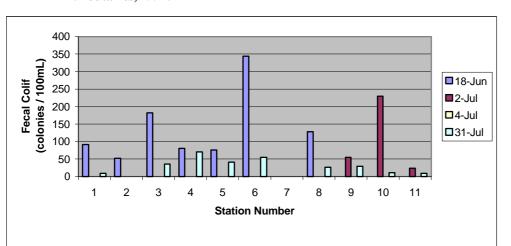


Figure 30. Fecal Coliform counts for all sampling stations, 18-June – 31-July, Canaan River and tributaries, 1997.

Figure 31. Fecal Coliform counts for all sampling stations, 04-Sept – 11-Nov, Canaan River and tributaries, 1997.

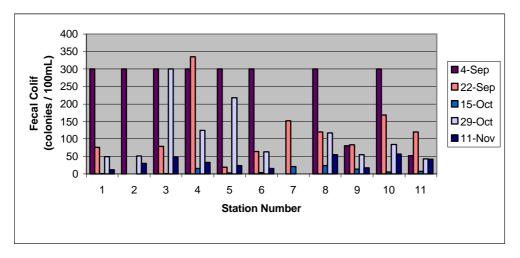
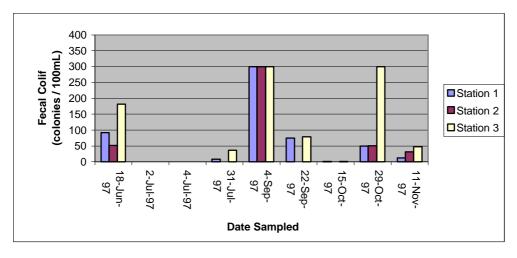



Figure 32. Fecal coliform counts for each sampling date, Stn 1 – 3, Canaan River and tributaries, 1997.

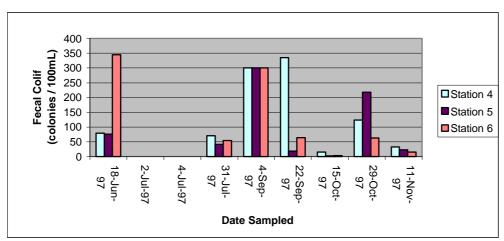


Figure 33. Fecal coliform counts for each sampling date, Stn 4 – 6, Canaan River and tributaries, 1997.

Figure 34. Fecal coliform counts for each sampling date, Stn 7 – 9, Canaan River and tributaries, 1997.

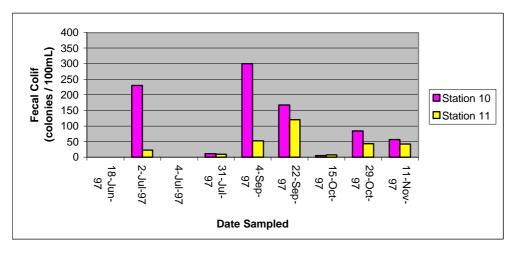



Figure 35. Fecal coliform counts for each sampling date, Stn 10 – 11, Canaan River and tributaries, 1997.

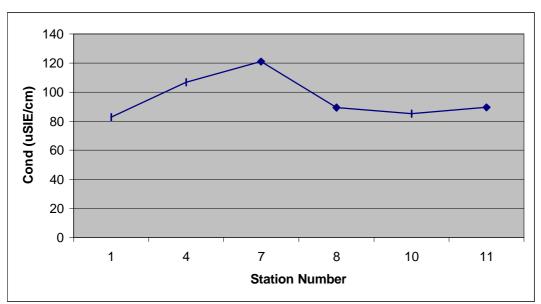
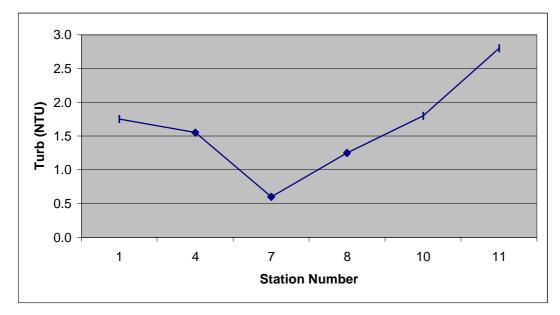



Figure 36. Mainstream median conductivity values for baseline samples, Canaan River and tributaries, 1997.

Figure 37. Mainstream median turbidity values for baseline samples, Canaan River and tributaries, 1997.

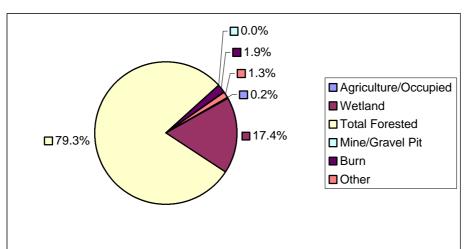


Figure 38. Land use for Station 1 drainage area (41 436 ha), Canaan River and tributaries (from Manley 1997).

Figure 39. Land use for Station 2 drainage area (12 304 ha), Canaan River and tributaries (from Manley 1997).

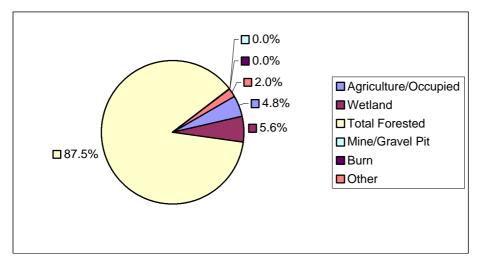
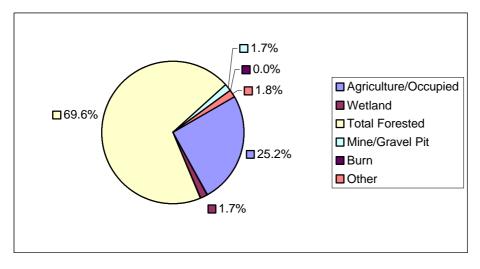
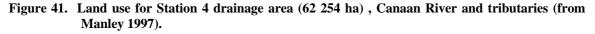




Figure 40. Land use for Station 3 drainage area (8 613 ha), Canaan River and tributaries (from Manley 1997).

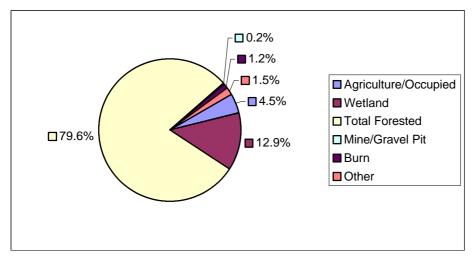


Figure 42. Land use for Station 5 drainage area (12 402 ha), Canaan River and tributaries (from Manley 1997).

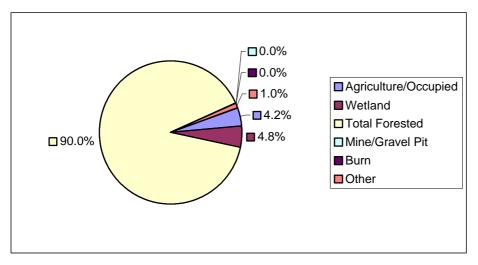
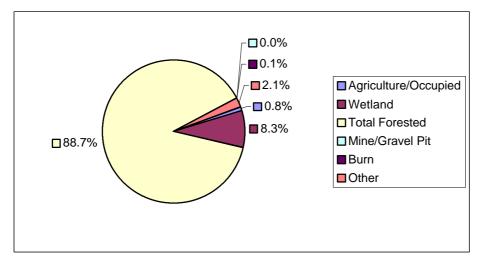
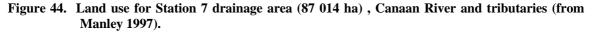




Figure 43. Land use for Station 6 drainage area (12 357 ha), Canaan River and tributaries (from Manley 1997).

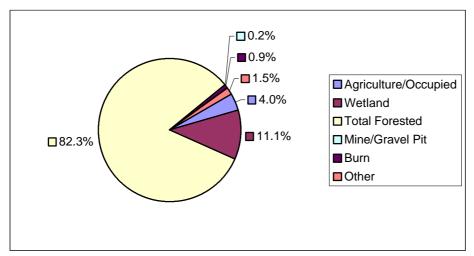


Figure 45. Land use for Station 8 drainage area (87 014 ha), Canaan River and tributaries (from Manley 1997).

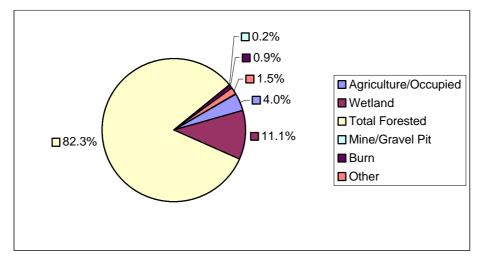
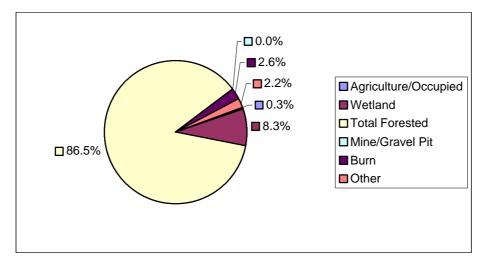
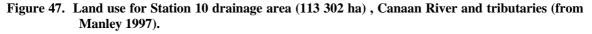




Figure 46. Land use for Station 9 drainage area (26 288 ha), Canaan River and tributaries (from Manley 1997).

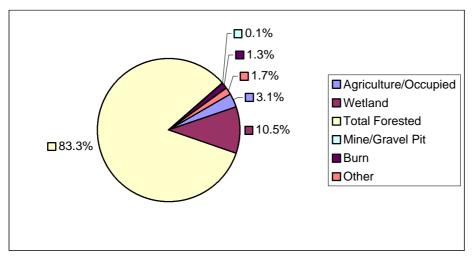
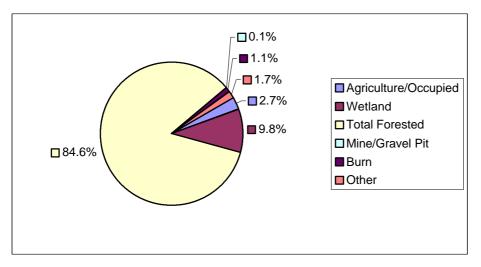



Figure 48. Land use for Station 11 drainage area (131 109 ha), Canaan River and tributaries (from Manley 1997).

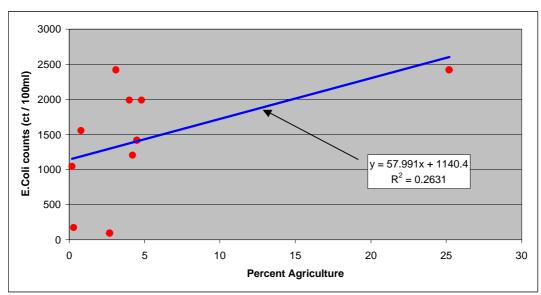


Figure 49. *E.coli* counts v. percent agricultural land for September 4, 1997 samples (for all stations sampled), Canaan River and tributaries 1997.

Figure 50. *E.coli* counts v. percent agricultural land for September 4, 1997 samples (not including Station 3), Canaan River and tributaries 1997.

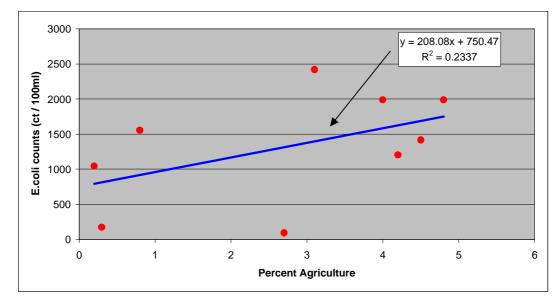


 Table 3. Water quality results (physical and chemical), Canaan River and tributaries, 1997.

			HARD	NO3	Al-XGF	ALK-G	As-XGF	Ca-D	Cd-XGF	Cl-IC	CLRA	COND	Cr-XGF	Cu-XGF	DO
DOE Station No.	Station No.	Date Sampled	mg/L	mg/L	ug/L	mg/L	ug/L	mg/L	ug/L	mg/L	TCU	USIE/CM	ug/L	ug/L	mg/L
00BR01AP0209	1	18-Jun-97	39.00	0.00	125.00	26.10	< 1.0	14.30	< 0.1	6.31	75.00	106.00	1.40	< 0.5	
River		4-Jul-97	21.50	0.08	525.00	14.70	< 1.0	7.80	< 0.1	2.54	300.00	47.60	0.90	0.80	
		31-Jul-97	12.10	0.00	153.00	12.20	< 1.0	3.70	< 0.1	1.90	120.00	737.00	0.90	< 0.5	
		4-Sep-97	15.30	0.03	260.00	12.00	< 1.0	4.80	< 0.1	1.76	100.00	46.90	< 0.5	< 0.5	
		22-Sep-97	12.90	0.00	316.00	6.41	< 1.0	4.00	< 0.1	2.31	120.00	38.20	0.90	< 0.5	
		15-Oct-97	19.80	0.00	78.40	19.10	< 1.0	6.30	< 0.1	2.81	70.00	59.60	< 0.5	< 0.5	
		29-Oct-97	16.00	0.00	128.00	14.80	< 1.0	5.10	< 0.1	2.70	100.00	53.70	0.60	< 0.5	
		11-Nov-97	10.60	0.05	314.00	2.78	< 1.0	3.10	< 0.1	2.49	80.00	33.20	< 0.5	< 0.5	
00BR01AP0206	2	4-Jul-97	19.90	0.32	245.00	15.20	< 1.0	7.00	< 0.1	4.78	100.00	72.50	< 0.5	< 0.5	
Tributary		29-Oct-97	24.30	0.07	138.00	20.10	< 1.0	8.40	< 0.1	9.09	80.00	86.00	1.00	< 0.5	
		11-Nov-97	15.50	0.13	388.00	6.07	< 1.0	5.20	< 0.1	4.66	120.00	50.40	< 0.5	< 0.5	
00BR01AP0205	3	18-Jun-97	127.60	0.16	72.80	66.40	< 1.0	48.80	< 0.1	10.90	20.00	279.00	2.00	< 0.5	
Tributary		4-Jul-97	30.90	0.20	1870.00	23.80	< 1.0	11.40	< 0.1	3.17	150.00	70.30	1.20	1.30	
		31-Jul-97	145.90	0.16	33.70	81.00	< 1.0	55.80	< 0.1	13.10	20.00	342.00	3.60	< 0.5	
		4-Sep-97	97.80	0.48	118.00	49.00	< 1.0	37.20	< 0.1	10.20	60.00	235.00	< 0.5	< 0.5	
		22-Sep-97	106.90	0.04	53.10	61.00	< 1.0	40.62	< 0.1	12.00	40.00	265.00	2.10	< 0.5	
		15-Oct-97	195.00	0.00	6.50	82.50	< 1.0	74.80	< 0.1	16.20	15.00	401.00	1.10	< 0.5	14.00
		29-Oct-97	106.10	0.44	72.20	53.60	< 1.0	40.20	< 0.1	15.20	50.00	263.00	2.60	< 0.5	
		11-Nov-97	98.50	0.31	136.00	51.00	< 1.0	37.30	< 0.1	11.60	60.00	224.00	1.40	< 0.5	
00BR01AP0175	4	18-Jun-97	32.60	0.00	121.00	23.70	< 1.0	11.90	< 0.1	3.85	100.00	93.70	1.10	< 0.5	
River		4-Jul-97	25.80	0.06	381.00	19.70	< 1.0	9.50	< 0.1	3.83	200.00	66.20	1.00	0.70	
		31-Jul-97	40.30	0.00	124.00	25.80	< 1.0	14.50	< 0.1	9.71	70.00	120.00	1.70	0.70	
		4-Sep-97	30.70	0.13	173.00	20.40	< 1.0	10.80	< 0.1	3.63	80.00	85.70	< 0.5	< 0.5	
		22-Sep-97	24.90	0.00	206.00	14.70	< 1.0	8.40	< 0.1	9.18	100.00	86.20	< 0.5	1.70	
		15-Oct-97	57.30	0.00	64.80	32.00	< 1.0	20.80	< 0.1	9.54	70.00	150.00	< 0.5	< 0.5	11.80
		29-Oct-97	34.60	0.01	253.00	23.50	< 1.0	12.20	< 0.1	6.95	100.00	98.00	1.20	< 0.5	
		11-Nov-97	19.50	0.07	388.00	7.17	< 1.0	6.50	< 0.1	3.95	120.00	51.70	< 0.5	< 0.5	
00BR01AP0204	5	18-Jun-97	23.00	0.00	48.20	22.20	< 1.0	7.90	< 0.1	2.31	40.00	59.90	0.90	< 0.5	
Tributary		31-Jul-97	28.70	0.00	46.90	28.10	< 1.0	10.00	< 0.1	3.11	20.00	74.70	1.30	0.60	
		4-Sep-97	26.00	0.36	133.00	16.50	< 1.0	9.10	< 0.1	3.11	50.00	71.90	0.60	< 0.5	
		22-Sep-97	21.10	0.00	103.00	16.30	< 1.0	7.21	< 0.1	2.82	50.00	64.80	< 0.5	< 0.5	
		15-Oct-97	32.10	0.00	14.40	28.30	< 1.0	11.20	< 0.1	4.14	10.00	82.60	< 0.5	< 0.5	
		29-Oct-97	32.50	0.23	137.00	22.60	< 1.0	11.20	< 0.1	6.53	50.00	83.20	1.20	< 0.5	
		11-Nov-97	22.00	0.19	276.00	10.30	< 1.0	7.50	< 0.1	3.49	100.00	55.90	< 0.5	< 0.5	
00BR01AP0203	6	18-Jun-97	6.60	0.00	184.00	8.29	< 1.0	2.00	< 0.1	2.96	150.00	34.60	0.60	< 0.5	
River		4-Jul-97	5.90	0.00	242.00	3.01	< 1.0	1.70	< 0.1	2.02	250.00	21.30	0.60	< 0.5	
		31-Jul-97	8.10	0.00	234.00	7.57	< 1.0	2.40	< 0.1	2.96	100.00	36.00	0.80	< 0.5	
		4-Sep-97	9.20	0.01	271.00	11.80	< 1.0	2.70	< 0.1	2.32	200.00	46.20	0.60	1.00	
		22-Sep-97	8.90	0.00	278.00	3.85	< 1.0	2.63	< 0.1	2.32	120.00	34.60	< 0.5	< 0.5	
		15-Oct-97	11.90	0.00	109.00	12.40	< 1.0	3.60	< 0.1	4.04	80.00	52.60	< 0.5	< 0.5	11.60
		29-Oct-97	10.90	0.00	161.00	8.47	< 1.0	3.20	< 0.1	3.05	120.00	43.70	0.80	< 0.5	
		11-Nov-97	8.90	0.03	400.00	2.14	< 1.0	2.40	< 0.1	2.48	150.00	32.80	< 0.5	< 0.5	

			F	Fe-X	К	Mg-D	Mn-X	Na	NH3T	Ni-X	NO2D	NOX	Pb-XGF	PH	SO4-IC
DOE Station No.	Station No.	Date Sampled	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	pН	mg/L
00BR01AP0209	1	18-Jun-97	< 0.1	0.48	0.50	0.80	0.03	4.70	0.02	< 0.01	< 0.05	< 0.05	< 1.0	7.67	15.50
River		4-Jul-97	< 0.1	0.68	0.56	0.50	0.11	2.30	0.13	< 0.01	< 0.05	0.13	1.10	6.87	4.59
		31-Jul-97	< 0.1	0.68	0.25	0.70	0.02	3.90	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.06	2.50
		4-Sep-97	< 0.1	0.62	0.46	0.80	0.05	3.20	< 0.01	< 0.01	< 0.05	0.08	< 1.0	7.12	4.37
		22-Sep-97	< 0.1	0.66	0.32	0.70	0.04	2.89	0.02	< 0.01	< 0.05	< 0.05	< 1.0	6.62	5.54
		15-Oct-97	< 0.1	0.43	0.28	1.00	0.01	5.80	0.02	< 0.01	< 0.05	< 0.05	< 1.0	7.55	3.49
		29-Oct-97	< 0.1	0.50	0.44	0.80	0.04	3.90	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.23	3.50
		11-Nov-97	< 0.1	0.66	0.26	0.70	0.08	2.30	0.01	< 0.01	< 0.05	0.10	< 1.0	5.76	3.61
00BR01AP0206	2	4-Jul-97	< 0.1	0.64	0.70	0.60	0.04	4.80	< 0.01	< 0.01	< 0.05	0.37	< 1.0	7.16	7.82
Tributary		29-Oct-97	< 0.1	0.59	0.72	0.80	0.04	7.20	< 0.01	< 0.01	< 0.05	0.12	< 1.0	7.29	4.44
		11-Nov-97	< 0.1	0.61	0.52	0.60	0.03	3.70	0.01	< 0.01	< 0.05	0.18	< 1.0	6.52	4.66
00BR01AP0205	3	18-Jun-97	0.15	0.12	0.90	1.40	0.04	6.70	< 0.01	< 0.01	< 0.05	0.21	< 1.0	8.27	55.80
Tributary		4-Jul-97	< 0.1	0.46	1.09	0.60	0.20	2.40	0.06	< 0.01	< 0.05	0.25	2.40	7.02	7.73
		31-Jul-97	0.18	0.04	1.06	1.60	0.02	7.80	0.02	< 0.01	< 0.05	0.21	< 1.0	8.19	69.90
		4-Sep-97	0.14	0.17	1.32	1.20	0.02	5.90	< 0.01	< 0.01	< 0.05	0.53	< 1.0	7.73	41.90
		22-Sep-97	0.16	0.08	1.50	1.34	0.01	7.26	0.01	< 0.01	< 0.05	0.09	< 1.0	8.27	49.90
		15-Oct-97	0.23	0.01	1.03	2.00	0.01	9.40	0.01	< 0.01	< 0.05	< 0.05	< 1.0	8.72	102.00
		29-Oct-97	0.15	0.14	1.81	1.40	0.02	7.60	< 0.01	< 0.01	< 0.05	0.49	< 1.0	7.92	43.90
		11-Nov-97	0.13	0.16	1.24	1.30	0.01	6.20	< 0.01	< 0.01	< 0.05	0.36	< 1.0	7.90	38.90
00BR01AP0175	4	18-Jun-97	< 0.1	0.49	0.41	0.70	0.03	4.00	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.74	14.00
River		4-Jul-97	< 0.1	0.55	0.66	0.50	0.10	2.70	0.13	< 0.01	< 0.05	0.11	< 1.0	7.25	8.69
		31-Jul-97	< 0.1	0.48	0.53	1.00	0.05	7.00	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.48	14.50
		4-Sep-97	< 0.1	0.55	0.63	0.90	0.04	4.80	0.04	< 0.01	< 0.05	0.18	< 1.0	7.38	7.83
		22-Sep-97	< 0.1	0.50	0.55	0.95	0.03	5.99	0.02	< 0.01	< 0.05	< 0.05	< 1.0	7.19	9.26
		15-Oct-97	< 0.1	0.31	0.54	1.30	0.04	11.00	0.02	< 0.01	< 0.05	< 0.05	< 1.0	7.70	22.30
		29-Oct-97	< 0.1	0.54	0.83	1.00	0.06	5.60	< 0.01	< 0.01	< 0.05	0.06	< 1.0	7.52	11.30
		11-Nov-97	< 0.1	0.72	0.47	0.80	0.05	3.00	0.01	< 0.01	< 0.05	0.12	< 1.0	6.70	8.25
00BR01AP0204	5	18-Jun-97	< 0.1	0.20	0.44	0.80	0.02	2.50	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.67	3.07
Tributary		31-Jul-97	< 0.1	0.15	0.43	0.90	0.04	3.10	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.57	3.26
		4-Sep-97	< 0.1	0.26	0.61	0.80	0.03	2.30	< 0.01	< 0.01	< 0.05	0.41	< 1.0	7.28	8.71
		22-Sep-97	< 0.1	0.24	0.59	0.75	0.02	2.44	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.37	7.95
		15-Oct-97	< 0.1	0.07	0.41	1.00	0.01	3.60	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.69	3.95
		29-Oct-97	< 0.1	0.32	1.02	1.10	0.03	3.20	< 0.01	< 0.01	< 0.05	0.28	< 1.0	7.48	6.85
		11-Nov-97	< 0.1	0.37	0.63	0.80	0.02	2.20	< 0.01	< 0.01	< 0.05	0.24	< 1.0	7.03	8.15
00BR01AP0203	6	18-Jun-97	< 0.1	0.80	0.32	0.40	0.02	4.60	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.02	2.20
River		4-Jul-97	< 0.1	1.25	0.16	0.40	0.05	2.60	0.04	< 0.01	< 0.05	< 0.05	< 1.0	5.81	1.36
		31-Jul-97	< 0.1	1.20	0.29	0.50	0.03	4.20	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	6.81	2.16
		4-Sep-97	< 0.1	0.76	0.43	0.60	0.02	5.00	< 0.01	< 0.01	< 0.05	0.06	< 1.0	6.97	3.70
		22-Sep-97	< 0.1	0.68	0.43	0.57	0.04	3.12	0.01	< 0.01	< 0.05	< 0.05	< 1.0	6.29	6.11
		15-Oct-97	< 0.1	0.64	0.33	0.70	0.01	6.90	0.02	< 0.01	< 0.05	< 0.05	< 1.0	7.11	2.75
		29-Oct-97	< 0.1	0.69	0.67	0.70	0.04	4.20	0.01	< 0.01	< 0.05	< 0.05	< 1.0	6.97	3.07
		11-Nov-97	< 0.1	0.86	0.45	0.70	0.07	2.20	0.02	< 0.01	< 0.05	0.08	< 1.0	5.62	4.18

			SS	TDS	TEMP	TKN	TOC	TP-L	TURB	ZN-X
DOE Station No.	Station No.	Date Sampled	mg/L	mg/L	degrees C	mg/L	mg/L	mg/L	NTU	mg/L
00BR01AP0209	1	18-Jun-97	2.00			0.32	11.30	0.011	3.40	0.014
River		4-Jul-97	60.00			0.90	19.00	0.059	10.10	0.020
		31-Jul-97	2.00			0.20	16.20	0.010	1.30	< 0.01
		4-Sep-97	5.00			0.48	15.40	0.017	6.70	< 0.01
		22-Sep-97	1.00			0.56	22.00	0.008	2.20	< 0.01
		15-Oct-97	0.40			0.28	12.00	0.005	0.40	< 0.01
		29-Oct-97	3.50			0.36	12.60	0.011	3.00	< 0.01
		11-Nov-97	3.00			0.54	20.90	0.008	2.20	< 0.01
00BR01AP0206	2	4-Jul-97	5.00			0.53	16.30	0.022	5.50	< 0.01
Tributary		29-Oct-97	40.00			0.42	14.20	0.014	4.00	< 0.01
		11-Nov-97	9.00			0.57	19.80	0.012	4.50	< 0.01
00BR01AP0205	3	18-Jun-97	5.00			0.22	4.30	0.014	0.70	< 0.01
Tributary		4-Jul-97	150.00			1.47	17.00	0.120	13.80	< 0.01
		31-Jul-97	1.00			0.20	4.20	0.005	0.70	0.017
		4-Sep-97	3.00			0.61	12.50	0.031	2.00	< 0.01
		22-Sep-97	0.30			0.41	8.90	0.005	0.80	< 0.01
		15-Oct-97	0.10		11.00	0.20	2.70	0.005	0.40	< 0.01
		29-Oct-97	1.30			0.48	10.70	0.017	1.80	< 0.01
		11-Nov-97	2.00			0.50	11.80	0.009	1.70	< 0.01
00BR01AP0175	4	18-Jun-97	2.00			0.26	11.40	0.011	2.40	< 0.01
River		4-Jul-97	60.00			0.81	17.20	0.049	7.20	< 0.01
		31-Jul-97	2.00			0.40	12.50	0.007	1.00	< 0.01
		4-Sep-97	4.00			0.40	12.40	0.016	4.10	< 0.01
		22-Sep-97	1.00			0.58	18.20	0.009	2.10	< 0.01
		15-Oct-97	0.00		11.50	0.29	9.60	0.005	0.07	< 0.01
		29-Oct-97	4.00			0.41	11.30	0.012	4.00	< 0.01
		11-Nov-97	5.00			0.47	18.00	0.010	4.50	< 0.01
00BR01AP0204	5	18-Jun-97	1.00			0.25	6.00	0.005	0.70	0.016
Tributary		31-Jul-97	1.00			0.20	4.80	0.005	0.60	0.014
		4-Sep-97	4.00			0.44	10.60	0.017	3.20	< 0.01
		22-Sep-97	0.00			0.36	10.60	0.005	1.60	< 0.01
		15-Oct-97	0.00			0.20	3.90	0.005	0.10	< 0.01
		29-Oct-97	11.00			0.40	8.20	0.015	3.80	< 0.01
		11-Nov-97	4.00			0.44	13.50	0.010	3.40	< 0.01
00BR01AP0203	6	18-Jun-97	4.00			0.36	15.40	0.013	1.50	< 0.01
River		4-Jul-97	4.00			0.45	22.80	0.009	1.40	< 0.01
		31-Jul-97	3.00			0.42	16.80	0.013	2.10	< 0.01
		4-Sep-97	9.00			0.41	12.10	0.017	21.20	< 0.01
		22-Sep-97	3.00			0.46	19.30	0.008	2.80	< 0.01
		15-Oct-97	0.00		10.00	0.31	11.80	0.005	1.00	< 0.01
		29-Oct-97	5.40			0.39	14.00	0.014	7.10	0.012
		11-Nov-97	7.00			0.46	18.60	0.010	6.40	< 0.01

OE Station No.	Station No.	Date Sampled	HARD mg/L	NO3 mg/L	Al-XGF ug/L	ALK-G mg/L	As-XGF ug/L	Ca-D mg/L	Cd-XGF ug/L	Cl-IC mg/L	CLRA TCU	COND USIE/CM	Cr-XGF ug/L	Cu-XGF ug/L	DO mg/I
00BR01AP0211	7	15-Oct-97	45.70	0.00	61.00	26.90	< 1.0	16.50	< 0.1	8.09	70.00	121.00	< 0.5	< 0.5	11.7
00BR01AP0176	8	18-Jun-97	33.20	0.00	98.90	22.40	< 1.0	11.80	< 0.1	6.46	100.00	88.00	1.10	< 0.5	
River		4-Jul-97	15.30	0.00	261.00	10.90	< 1.0	5.30	< 0.1	3.03	200.00	40.40	0.60	< 0.5	
		31-Jul-97	21.40	0.00	103.00	21.90	< 1.0	11.10	< 0.1	6.62	70.00	90.70	1.10	< 0.5	
		4-Sep-97	36.70	0.24	200.00	24.00	< 1.0	13.20	< 0.1	6.55	60.00	109.00	< 0.5	< 0.5	
		22-Sep-97	20.00	0.00	218.00	12.40	< 1.0	6.78	< 0.1	5.46	100.00	61.20	0.70	< 0.5	
		15-Oct-97	39.00	0.00	95.40	25.00	< 1.0	13.80	< 0.1	8.39	60.00	114.00	< 0.5	< 0.5	11.3
		29-Oct-97	32.30	0.00	136.00	22.20	< 1.0	11.30	< 0.1	7.16	100.00	95.70	1.20	< 0.5	
		11-Nov-97	17.80	0.07	311.00	7.56	< 1.0	5.80	< 0.1	4.33	120.00	53.50	< 0.5	< 0.5	
00BR01AP0177	9	4-Jul-97	8.30	0.00	321.00	4.12	1.90	2.50	< 0.1	3.21	150.00	30.20	0.60	< 0.5	
Tributary		31-Jul-97	7.30	0.00	263.00	3.76	< 1.0	2.10	< 0.1	1.10	250.00	19.90	0.80	< 0.5	
		4-Sep-97	10.90	0.00	172.00	11.40	< 1.0	3.20	< 0.1	2.94	80.00	45.10	0.80	< 0.5	
		22-Sep-97	13.80	0.00	92.90	18.80	< 1.0	4.20	< 0.1	3.45	60.00	62.50	< 0.5	< 0.5	
		15-Oct-97	11.60	0.00	198.00	9.90	< 1.0	3.49	< 0.1	2.64	100.00	47.10	0.80	0.60	
		29-Oct-97	15.90	0.00	180.00	14.40	< 1.0	4.90	< 0.1	3.20	140.00	55.30	0.70	< 0.5	
		11-Nov-97	12.20	0.05	450.00	3.17	< 1.0	3.40	< 0.1	2.44	150.00	36.80	< 0.5	< 0.5	
00BR01AP0208	10	2-Jul-97	17.70	0.01	312.00	10.60	1.80	6.10	< 0.1	2.56	200.00	43.80	0.60	0.90	
River		4-Jul-97	14.70	0.00	316.00	9.04	< 1.0	4.90	< 0.1	6.87	250.00	46.20	0.70	0.60	
		4-Jul-97	16.00	0.00	326.00	10.60	< 1.0	5.40	< 0.1	6.39	250.00	47.00	0.80	0.60	
		31-Jul-97	30.40	0.00	97.60	21.50	< 1.0	10.70	< 0.1	6.60	60.00	90.50	1.10	< 0.5	
		4-Sep-97	46.30	0.34	175.00	26.40	< 1.0	16.90	< 0.1	7.89	60.00	127.00	0.70	< 0.5	
		22-Sep-97	25.50	0.00	171.00	16.70	< 1.0	8.71	< 0.1	6.46	80.00	80.00	0.80	< 0.5	
		15-Oct-97	39.10	0.00	73.10	23.90	< 1.0	13.70	< 0.1	8.85	80.00	110.00	< 0.5	< 0.5	12.2
		29-Oct-97	38.50	0.06	183.00	24.70	< 1.0	13.60	< 0.1	7.91	120.00	109.00	1.20	< 0.5	
		11-Nov-97	20.70	0.07	432.00	8.46	< 1.0	6.80	< 0.1	3.86	100.00	56.50	0.80	< 0.5	
00BR01AP0195	11	14-Jul-96	12.70		419.00	7.30		4.32	< 0.1	2.54	150.00	40.10		1.60	
River		3-Sep-96	40.60		61.70	25.50		14.10	< 0.1	6.69	50.00	116.00		1.00	
		10-Sep-96	42.30		49.10	27.30		14.80	< 0.1	7.85	40.00	122.10		3.60	
		10-Oct-96	14.20		137.00	11.50		4.91	< 0.1	5.16	100.00	62.70	< 0.5	< 0.5	
		2-Jul-97	13.50	0.00	279.00	7.32	1.80	4.40	< 0.1	2.53	200.00	36.40	1.20	1.70	
		4-Jul-97	12.80	0.00	230.00	8.64	< 1.0	4.30	< 0.1	2.72	200.00	34.80	0.60	0.60	
		4-Jul-97	15.20	0.00	226.00	9.22	< 1.0	5.10	< 0.1	2.08	200.00	33.80	0.70	1.50	
		31-Jul-97	31.10	0.00	99.90	21.00	< 1.0	10.80	< 0.1	7.59	60.00	94.20	1.40	< 0.5	
		4-Sep-97	43.10	0.00	52.80	28.80	< 1.0	15.10	< 0.1	9.52	40.00	129.00	< 0.5	< 0.5	
		22-Sep-97	26.20	0.00	201.00	17.80	< 1.0	8.78	< 0.1	8.08	60.00	88.50	0.90	< 0.5	
		15-Oct-97	28.30	0.00	78.50	20.10	< 1.0	9.70	< 0.1	7.38	100.00	90.80	< 0.5	< 0.5	11.4
		29-Oct-97	38.60	0.00	61.00	25.90	< 1.0	13.50	< 0.1	10.20	50.00	118.00	1.00	< 0.5	
		11-Nov-97	18.00	0.01	275.00	8.38	< 1.0	5.90	< 0.1	6.84	100.00	58.20	< 0.5	< 0.5	

	<i>a</i>		F	Fe-X	K	Mg-D	Mn-X	Na	NH3T	Ni-X	NO2D	NOX	Pb-XGF	PH	SO4-I
E Station No.	Station No.	Date Sampled	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	ug/L	pН	mg
00BR01AP0211	7	15-Oct-97	< 0.1	0.37	0.45	1.10	0.02	6.60	0.02	< 0.01	< 0.05	< 0.05	< 1.0	7.57	2.1
00BR01AP0176	8	18-Jun-97	< 0.1	0.50	0.47	0.90	0.03	4.90	0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.55	11.5
River		4-Jul-97	< 0.1	0.62	0.27	0.50	0.07	2.60	0.17	< 0.01	< 0.05	< 0.05	< 1.0	6.98	3.8
		31-Jul-97	< 0.1	0.55	0.43	0.90	0.03	5.10	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.32	11.4
		4-Sep-97	< 0.1	0.53	0.78	0.90	0.09	5.20	< 0.01	< 0.01	< 0.05	0.29	< 1.0	7.34	14.
		22-Sep-97	< 0.1	0.63	0.50	0.75	0.05	3.85	0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.06	8.
		15-Oct-97	< 0.1	0.55	0.47	1.10	0.02	6.20	0.03	< 0.01	< 0.05	< 0.05	< 1.0	7.56	4.
		29-Oct-97	0.11	0.73	0.82	1.00	0.09	5.60	0.02	< 0.01	< 0.05	< 0.05	< 1.0	7.45	11.
		11-Nov-97	< 0.1	0.65	0.48	0.80	0.04	3.00	0.02	< 0.01	< 0.05	0.12	< 1.0	6.71	8.
00BR01AP0177	9	4-Jul-97	< 0.1	1.00	0.21	0.50	0.06	3.20	0.01	< 0.01	< 0.05	< 0.05	< 1.0	6.16	2.
Tributary		31-Jul-97	< 0.1	1.08	0.18	0.50	0.05	1.90	0.03	< 0.01	< 0.05	< 0.05	< 1.0	6.18	1
		4-Sep-97	< 0.1	0.98	0.35	0.70	0.03	4.90	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.10	3
		22-Sep-97	0.12	0.52	0.39	0.80	0.02	6.20	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.40	4
		15-Oct-97	< 0.1	0.69	0.52	0.70	0.02	4.45	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.14	6
		29-Oct-97	< 0.1	0.75	0.67	0.90	0.04	5.10	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.29	4
		11-Nov-97	< 0.1	0.98	0.48	0.90	0.09	2.50	0.02	< 0.01	< 0.05	0.10	< 1.0	6.17	7
00BR01AP0208	10	2-Jul-97	< 0.1	0.77	0.38	0.60	0.05	2.60	0.01	< 0.01	< 0.05	0.06	< 1.0	6.85	4
River		4-Jul-97	< 0.1	1.02	0.25	0.60	0.07	5.70	0.02	< 0.01	< 0.05	< 0.05	< 1.0	6.74	3
		4-Jul-97	< 0.1	0.78	0.26	0.60	0.07	4.80		< 0.01	< 0.05	< 0.05	< 1.0	6.91	3
		31-Jul-97	< 0.1	0.52	0.48	0.90	0.03	5.40	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.41	11
		4-Sep-97	< 0.1	0.47	0.96	1.00	0.07	5.80	< 0.01	< 0.01	< 0.05	0.39	< 1.0	7.47	17
		22-Sep-97	< 0.1	0.66	0.66	0.92	0.05	5.17	0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.30	10
		15-Oct-97	< 0.1	0.53	0.46	1.20	0.03	6.90	0.02	< 0.01	< 0.05	< 0.05	< 1.0	7.50	13
		29-Oct-97	< 0.1	0.62	0.69	1.10	0.07	6.50	< 0.01	< 0.01	< 0.05	0.11	< 1.0	7.44	13
		11-Nov-97	< 0.1	0.80	0.64	0.90	0.08	3.30	0.01	< 0.01	< 0.05	0.12	< 1.0	6.78	8
00BR01AP0195	11	14-Jul-96		0.79	0.34	0.46	0.07	2.79	< 0.01	< 0.01		< 0.05	< 1.0	6.52	2
River		3-Sep-96		0.55	0.59	1.31	0.09	6.78	< 0.01	< 0.01		< 0.05	< 1.0	7.56	12
		10-Sep-96		0.61	0.58	1.30	0.11	6.90	0.02	< 0.01		< 0.05	< 1.0	7.31	14
		10-Oct-96		0.31	0.35	0.48	0.03	3.52	< 0.01	< 0.01		< 0.05	< 1.0	6.88	5
		2-Jul-97	< 0.1	0.72	0.38	0.60	0.08	2.60	0.02	< 0.01	< 0.05	< 0.05	< 1.0	6.60	3
		4-Jul-97	< 0.1	0.65	0.26	0.50	0.06	2.50	0.11	< 0.01	< 0.05	< 0.05	< 1.0	6.73	3
		4-Jul-97	< 0.1	0.71	0.41	0.60	0.07	2.40		< 0.01	< 0.05	< 0.05	< 1.0	6.82	3
		31-Jul-97	< 0.1	0.62	0.46	1.00	0.07	5.40	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.37	11
		4-Sep-97	< 0.1	0.31	0.52	1.30	0.05	7.50	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.65	14
		22-Sep-97	< 0.1	0.59	0.79	1.04	0.07	6.07	0.02	< 0.01	< 0.05	< 0.05	< 1.0	7.36	10
		15-Oct-97	0.13	0.53	0.41	1.00	0.04	5.00	0.07	< 0.01	< 0.05	< 0.05	< 1.0	7.35	1
		29-Oct-97	< 0.1	0.39	0.51	1.20	0.03	7.80	< 0.01	< 0.01	< 0.05	< 0.05	< 1.0	7.50	13
		11-Nov-97	< 0.1	0.58	0.41	0.80	0.03	4.40	0.01	< 0.01	< 0.05	< 0.05	< 1.0	6.82	8

OOE Station No.	Station No.	Date Sampled	SS mg/L	TDS mg/L	TEMP degrees C	TKN mg/L	TOC mg/L	TP-L mg/L	TURB NTU	ZN-X mg/I
00BR01AP0211	7	15-Oct-97	0.20		9.50	0.28	9.10	0.005	0.60	< 0.01
00BR01AP0176	8	18-Jun-97	2.00			0.28	10.20	0.008	1.40	< 0.01
River		4-Jul-97	20.00			0.49	19.00	0.018	2.90	0.021
		31-Jul-97	1.00			0.27	11.30	0.007	1.10	0.029
		4-Sep-97	8.00			0.43	10.60	0.021	4.70	< 0.0
		22-Sep-97	3.00			0.51	17.20	0.009	3.20	< 0.0
		15-Oct-97	1.20		9.50	0.26	8.80	0.005	1.10	< 0.0
		29-Oct-97	9.70			0.38	10.20	0.016	4.10	< 0.0
		11-Nov-97	10.00			0.60	16.70	0.013	4.30	0.01
00BR01AP0177	9	4-Jul-97	5.00			0.45	20.90	0.012	2.10	< 0.0
Tributary		31-Jul-97	4.00			0.44	22.20	0.090	1.40	< 0.0
		4-Sep-97	1.00			0.42	12.50	0.015	1.90	< 0.0
		22-Sep-97	1.00			0.24	7.50	0.011	3.30	< 0.0
		15-Oct-97	2.00			0.48	14.20	0.011	6.10	< 0.0
		29-Oct-97	2.40			0.34	12.50	0.016	6.50	0.02
		11-Nov-97	8.00			0.48	17.80	0.015	9.50	0.01
00BR01AP0208	10	2-Jul-97	8.00			0.48	19.50	0.014	2.30	0.05
River		4-Jul-97	20.00			0.49	19.60	0.018	4.90	< 0.0
		4-Jul-97	20.00						4.00	0.01
		31-Jul-97	2.00			0.24	10.40	0.007	1.20	< 0.0
		4-Sep-97	6.00			0.42	10.10	0.019	4.60	< 0.0
		22-Sep-97	3.00			0.42	13.60	0.009	4.30	< 0.0
		15-Oct-97	0.60		9.50	0.33	9.80	0.005	1.30	< 0.0
		29-Oct-97	15.00			0.56	9.60	0.028	5.30	< 0.0
		11-Nov-97	14.00			0.51	16.80	0.015	6.80	< 0.0
00BR01AP0195	11	14-Jul-96	4.00	70.00		0.46	21.00	0.016	3.20	< 0.0
River		3-Sep-96	4.00	80.00		0.28	6.60	0.009	3.30	< 0.0
		10-Sep-96	20.00	80.00		0.29	5.40	0.006	4.30	< 0.0
		10-Oct-96	4.00	70.00		0.38	15.20	0.012	5.70	< 0.0
		2-Jul-97	3.00			0.52	19.40	0.009	1.50	0.01
		4-Jul-97	7.00			0.49	19.60	0.014	2.70	0.01
		4-Jul-97	9.00						3.00	0.01
		31-Jul-97	2.00			0.26	10.10	0.006	1.80	< 0.0
		4-Sep-97	1.00			0.22	5.10	0.005	2.30	< 0.0
		22-Sep-97	5.00			0.54	11.40	0.009	6.00	< 0.0
		15-Oct-97	2.00		11.00	0.34	10.50	0.008	3.80	< 0.0
		29-Oct-97	1.90			0.25	7.10	0.010	2.60	< 0.0
		11-Nov-97	3.00			0.42	14.10	0.010	5.50	< 0.0

Table 4. Bacterial results, Canaan River and tributaries, 1997.

			Total Coliform				E.coli				Fecal coliform			
			(count/100mL)				(count/100mL)				(count/100mL			
DOE Station No.	Station No.	Date Sampled	1	2	3	4	1	2	3	4	1	2	3	4
00BR01AP0209	1	18-Jun-97	1733				77	105			84	100		
		31-Jul-97	1414	1300			14	9			8	9		
		4-Sep-97	> 2419				1046				300			
		22-Sep-97	1986	> 2419	> 2419	1986	86	66	119	93	85	66	80	7
		15-Oct-97	205	142			1	1			1	1		
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	108	75	102	119	50	53	47	4
		11-Nov-97	> 2419	> 2419	1986		25	23	20		9	14	13	
00BR01AP0206	2	18-Jun-97	1733	770			63	55			48	56		
		4-Sep-97	> 2419				1986				300			
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	124	86	132	105	53	50	52	5
		11-Nov-97	> 2419	> 2419	> 2419		33	35	31		28	34	30	
00BR01AP0205	3	18-Jun-97	1986	1733			219	192			200	164		
		31-Jul-97	> 2419	> 2419			41	58			32	40		
		4-Sep-97	> 2419				> 2419				300			
		22-Sep-97	1986	1986	1986	1986	99	124	99	91	86	70	72	8
		15-Oct-97	205	275			2	4			1	1		
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	921	770	687	613	300	300	300	30
		11-Nov-97	> 2419	1553	> 2419		50	43	67		49	54	40	
00BR01AP0175	4	18-Jun-97	1533	1986			104	1986			58	102		
		31-Jul-97	> 2419	1011			111	82			70	71		
		4-Sep-97	> 2419				1414				300			
		22-Sep-97	> 2419	> 2419	> 2419	> 2419	435	345	816	548	300	320	380	34
		15-Oct-97	365	365			26	20			17	14		
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	210	602	299	491	114	121	134	12
		11-Nov-97	> 2419	> 2419	1011		33	28	29		34	30	33	
00BR01AP0204	5	18-Jun-97	1986	1733			61	88			83	69		
		31-Jul-97	1553	> 2419			29	41			42	40		
		4-Sep-97	> 2419				1203				300			
		22-Sep-97	1046	1533	980	1046	16	17	20	32	14	27	21	1
		15-Oct-97	249	261			3	3				2		
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	411	517	344	411	256	192	184	23
		11-Nov-97	1553	1986	1414		35	40	32		30	22	18	
00BR01AP0203	6	18-Jun-97	> 2419	> 2419			613	686			352	336		
		31-Jul-97	> 2419	> 2419			41	46			54	55		
		4-Sep-97	> 2419				1553				300			
		22-Sep-97	1553	1733	1553	1733	87	71	71	70	44	86	65	(
		15-Oct-97	649	816			3	5			5	2		
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	248	293	144	228	65	59	66	(
		11-Nov-97	1986	> 2419	> 2419	/	26	33	27		13	14	19	

			Total Coliform				E.coli				Fecal			
			(count/100mL)				(count/100mL)				(count/100mL			
DOE Station No.	Station No.	Date Sampled	1	2	3	4	1	2	3	4	1	2	3	4
00BR01AP0211	7	22-Sep-97	> 2419	> 2419	> 2419	> 2419	172	130	178	162	140	134	156	176
		15-Oct-97	387	365			29	37			23	19		
00BR01AP0176	8	18-Jun-97	1414	1553			99	127			133	123		
		31-Jul-97	1300	1300			23	31			30	23		
		4-Sep-97	> 2419				1986				300			
		22-Sep-97	> 2419	> 2419	> 2419	> 2419	178	228	132	140	120	140	97	120
		15-Oct-97	488	488			28	33			19	27		
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	525	184	299	210	130	118	100	121
		11-Nov-97	> 2419	1011	1011		54	50	41		64	50	52	
00BR01AP0177	9	2-Jul-97	> 2419	> 2419			126	91			57	52		
		31-Jul-97	1414	1986			40	36			38	19		
		4-Sep-97	> 2419				173				80			
		22-Sep-97	1986	1733	1986	1733	107	186	114	124	60	92	67	112
		15-Oct-97	326	231			16	8			19	8		
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	115	96	203	131	50	63	52	57
		11-Nov-97	1733	1986	> 2419		28	39	38		18	22	12	
00BR01AP0208	10	2-Jul-97	> 2419	> 2419				1046			212	248		
		31-Jul-97	980	921			12	12			13	9		
		4-Sep-97	> 2419				> 2419				300			
		22-Sep-97	> 2419	> 2419	> 2419	> 2419	210	179	166	291	200	154	176	141
		15-Oct-97	387	435			10	9			5	6		
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	205	157	210	172	76	80	88	92
		11-Nov-97	> 2419	> 2419	> 2419		88	105	56		58	51	60	
00BR01AP0195	11	2-Jul-97	> 2419	> 2419			40	44			18	28		
		31-Jul-97	547	649			11	10			9	9		
		4-Sep-97	> 2419				93				52			
		22-Sep-97	> 2419	> 2419	> 2419	> 2419	125	185	173	186	92	118	116	154
		15-Oct-97	517	649			22	16			7	7		
		29-Oct-97	> 2419	> 2419	> 2419	> 2419	76	74	82	203	40	41	45	46
		11-Nov-97	> 2419	1733	> 2419		68	58	39		40	44	42	

Baseline results											
		Number of		HARD	Al-XGF	ALK-G	Ca-D	Cl-IC	CLRA	COND	Cr-XGF
DOE Station No.	Station No.	observations		mg/L	ug/L	mg/L	mg/L	mg/L	TCU	USIE/CM	ug/L
00BR01AP0209	1	4	Mean	20.95	168.10	15.95	7.08	3.33	96.25	235.20	0.925
			St. Dev.	12.52	103.29	8.52	4.95	2.02	27.50	335.73	0.369
			Median	16.35	139.00	15.65	5.15	2.56	97.50	82.80	0.900
00BR01AP0206	2	0	Mean								
			St. Dev.			not sample	d as baseli	ine			
			Median								
00BR01AP0205	3	4	Mean	143.85	41.53	72.73	55.01	13.05	23.75	321.75	2.200
			St. Dev.	37.64	28.28	10.67	14.58	2.28	11.09	62.55	1.036
			Median	136.75	43.40	73.70	52.30	12.55	20.00	310.50	2.050
00BR01AP0175	4	4	Mean	38.78	128.95	24.05	13.90	8.07	85.00	112.48	0.950
			St. Dev.	13.86	58.14	7.16	5.24	2.82	17.32	28.91	0.574
			Median	36.45	122.50	24.75	13.20	9.36	85.00	106.85	0.800
00BR01AP0204	5	4	Mean	26.23	53.13	23.73	9.08	3.10	30.00	70.50	0.800
			St. Dev.	5.08	36.74	5.70	1.85	0.77	18.26	10.15	0.383
			Median	25.85	47.55	25.15	8.95	2.97	30.00	69.75	0.700
00BR01AP0203	6	4	Mean	8.88	201.25	8.03	2.66	3.07	112.50	39.45	0.600
			St. Dev.	2.23	72.50	3.50	0.68	0.71	29.86	8.79	0.141
			Median	8.50	209.00	7.93	2.52	2.96	110.00	35.30	0.550
00BR01AP0211	7	1	Mean	45.70	61.00	26.90	16.50	8.09	70.00	121.00	0.500
			St. Dev.								
			Median	45.70	61.00	26.90	16.50	8.09	70.00	121.00	0.500
00BR01AP0176	8	4	Mean	28.40	128.83	20.43	10.87	6.73	82.50	88.48	0.850
			St. Dev.	9.22	59.53	5.52	2.96	1.22	20.62	21.61	0.300
			Median	27.30	100.95	22.15	11.45	6.54	85.00	89.35	0.900
00BR01AP0177	9	3	Mean	10.90	184.63	10.82	3.26	2.40	136.67	43.17	0.700
			St. Dev.	3.31	85.83	7.56	1.07	1.19	100.17	21.57	0.173
			Median	11.60	198.00	9.90	3.49	2.64	100.00	47.10	0.800
00BR01AP0208	10	4	Mean	28.18	163.43	18.18	9.80	6.12	105.00	81.08	0.750
			St. Dev.	8.97	107.43	5.87	3.21	2.61	64.03	27.79	0.265
			Median	27.95	134.30	19.10	9.71	6.53	80.00	85.25	0.700
00BR01AP0195	11	4	Mean	24.78	164.60	16.56	8.42	6.40	105.00	77.48	1.000
			St. Dev.	7.78	93.12	6.30	2.80	2.59	66.08	27.48	0.392
			Median	27.25	150.45	18.95	9.24	7.49	80.00	89.65	1.050

Table 5. Summary statistics for chemical and physical parameters, grouped by baseline and post rainfall results, Canaan River and tributaries, 1997.

Baseline results

Baseline resul	ts										
		Number of		DO	Fe-X	Κ	Mg-D	Mn-X	Na	NH3T	pН
DOE Station	Station No.	observations		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pН
00BR01AP02	1	4	Mean		0.562	0.338	0.800	0.025	4.32	0.017	7.23
			St. Dev.		0.125	0.109	0.141	0.014	1.23	0.005	0.48
			Median		0.567	0.302	0.750	0.025	4.30	0.018	7.31
00BR01AP02	2	0	Mean								
			St. Dev.					not sa	mpled as b	aseline	
			Median								
00BR01AP02	3	4	Mean	14.0	0.060	1.122	1.585	0.021	7.79	0.013	8.36
			St. Dev.		0.046	0.262	0.298	0.014	1.16	0.003	0.24
			Median	14.0	0.058	1.045	1.500	0.018	7.53	0.012	8.27
00BR01AP01	4	4	Mean	11.8	0.445	0.509	0.988	0.037	7.00	0.015	7.53
			St. Dev.		0.093	0.064	0.246	0.010	2.95	0.006	0.25
			Median	11.8	0.487	0.537	0.975	0.039	6.50	0.015	7.59
00BR01AP02	5	4	Mean		0.163	0.466	0.863	0.023	2.91	0.010	7.58
			St. Dev.		0.075	0.082	0.111	0.011	0.55	0.000	0.15
			Median		0.172	0.435	0.850	0.022	2.80	0.010	7.62
00BR01AP02	6	4	Mean	11.6	0.828	0.340	0.543	0.025	4.71	0.012	6.81
			St. Dev.		0.254	0.061	0.126	0.011	1.59	0.002	0.37
			Median	11.6	0.740	0.322	0.535	0.026	4.40	0.011	6.92
00BR01AP02	7	1	Mean	11.7	0.372	0.452	1.100	0.018	6.60	0.015	7.57
			St. Dev.				1 1 0 0	0.010	0	0.017	
			Median	11.7	0.372	0.452	1.100	0.018	6.60	0.015	7.57
00BR01AP01	8	4	Mean	11.3	0.558	0.471	0.913	0.031	5.01	0.017	7.37
			St. Dev.	11.0	0.053	0.029	0.144	0.011	0.96	0.010	0.24
	2	2	Median	11.3	0.549	0.474	0.900	0.031	5.00	0.013	7.44
00BR01AP01	9	3	Mean		0.765	0.363	0.667	0.032	4.18	0.015	6.91
			St. Dev.		0.286	0.171	0.153	0.016	2.16	0.009	0.64
0000014000	10		Median	10.0	0.690	0.393	0.700	0.024	4.45	0.010	7.14
00BR01AP02	10	4	Mean	12.2	0.620	0.494	0.905	0.042	5.02	0.014	7.27
			St. Dev.	10.0	0.117	0.120	0.245	0.013	1.78	0.007	0.29
0000014001	11	4	Median	12.2	0.594	0.470	0.910	0.042	5.29	0.011	7.36
00BR01AP01	11	4	Mean	11.4	0.617	0.507	0.910	0.067	4.77	0.030	7.17
			St. Dev.	11 /	0.080	0.189	0.208	0.018	1.51	0.027	0.38
			Median	11.4	0.606	0.433	1.000	0.072	5.20	0.020	7.36

Baseline results

		Number of		SO4-IC	SS	TKN	TOC	TP-L	TURB
DOE Station No.	Station No.	observations		mg/L	mg/L	mg/L	mg/L	mg/L	NTU
00BR01AP0209	1	4	Mean	6.76	1.35	0.340	15.38	0.009	1.83
			St. Dev.	5.96	0.79	0.155	4.92	0.003	1.28
			Median	4.52	1.50	0.300	14.10	0.009	1.75
00BR01AP0206	2	0	Mean						
			St. Dev.						
			Median						
00BR01AP0205	3	4	Mean	69.40	1.60	0.258	5.03	0.007	0.65
			St. Dev.	23.30	2.30	0.102	2.68	0.005	0.17
			Median	62.85	0.65	0.210	4.25	0.005	0.70
00BR01AP0175	4	4	Mean	15.02	1.25	0.383	12.93	0.008	1.39
			St. Dev.	5.40	0.96	0.145	3.71	0.003	1.07
			Median	14.25	1.50	0.345	11.95	0.008	1.55
00BR01AP0204	5	4	Mean	4.56	0.50	0.253	6.33	0.005	0.75
			St. Dev.	2.29	0.58	0.075	2.98	0.000	0.62
			Median	3.61	0.50	0.225	5.40	0.005	0.65
00BR01AP0203	6	4	Mean	3.31	2.50	0.388	15.83	0.010	1.85
			St. Dev.	1.89	1.73	0.066	3.13	0.004	0.78
			Median	2.48	3.00	0.390	16.10	0.011	1.80
00BR01AP0211	7	1	Mean	2.13	0.20	0.280	9.10	0.005	0.60
			St. Dev.						
			Median	2.13	0.20	0.280	9.10	0.005	0.60
00BR01AP0176	8	4	Mean	8.81	1.80	0.330	11.88	0.007	1.70
			St. Dev.	3.52	0.91	0.120	3.69	0.002	1.01
			Median	9.87	1.60	0.275	10.75	0.008	1.25
00BR01AP0177	9	3	Mean	4.37	2.33	0.387	14.63	0.037	3.60
			St. Dev.	2.50	1.53	0.129	7.36	0.046	2.36
			Median	4.34	2.00	0.440	14.20	0.011	3.30
00BR01AP0208	10	4	Mean	9.76	3.40	0.368	13.33	0.009	2.28
			St. Dev.	4.03	3.22	0.105	4.44	0.004	1.44
			Median	10.90	2.50	0.375	12.00	0.008	1.80
00BR01AP0195	11	4	Mean	8.97	3.00	0.415	12.85	0.008	3.28
			St. Dev.	3.95	1.41	0.137	4.40	0.001	2.08
			Median	10.75	2.50	0.430	10.95	0.009	2.80

Post rainfall

i obt i unnun							<i>a</i> b	~	GT D	~~~~~	~
		Number of		HARD	Al-XGF	ALK-G	Ca-D	Cl-IC	CLRA	COND	Cr-XGF
DOE Station No.	Station No.	observations		mg/L	ug/L	mg/L	mg/L	mg/L	TCU	USIE/CM	ug/L
00BR01AP0209	1	4	Mean	15.85	306.75	11.07	5.20	2.37	145.00	45.35	0.625
			St. Dev.	4.47	165.15	5.68	1.94	0.42	103.76	8.66	0.189
			Median	15.65	287.00	13.35	4.95	2.52	100.00	47.25	0.550
00BR01AP0206	2	3	Mean	19.90	257.00	13.79	6.87	6.18	100.00	69.63	0.667
			St. Dev.	4.40	125.43	7.12	1.60	2.52	20.00	17.97	0.289
			Median	19.90	245.00	15.20	7.00	4.78	100.00	72.50	0.500
00BR01AP0205	3	4	Mean	83.33	549.05	44.35	31.53	10.04	80.00	198.08	1.425
			St. Dev.	35.15	881.04	13.83	13.49	5.04	46.90	86.75	0.873
			Median	98.15	127.00	50.00	37.25	10.90	60.00	229.50	1.300
00BR01AP0175	4	4	Mean	27.65	298.75	17.69	9.75	4.59	125.00	75.40	0.800
			St. Dev.	6.52	104.30	7.21	2.43	1.58	52.60	20.52	0.356
			Median	28.25	317.00	20.05	10.15	3.89	110.00	75.95	0.750
00BR01AP0204	5	3	Mean	26.83	182.00	16.47	9.27	4.38	66.67	70.33	0.767
			St. Dev.	5.30	81.43	6.15	1.86	1.87	28.87	13.72	0.379
			Median	26.00	137.00	16.50	9.10	3.49	50.00	71.90	0.600
00BR01AP0203	6	4	Mean	8.73	268.50	6.36	2.50	2.47	180.00	36.00	0.625
			St. Dev.	2.08	99.26	4.59	0.63	0.43	57.15	11.40	0.126
			Median	9.05	256.50	5.74	2.55	2.40	175.00	38.25	0.600
00BR01AP0211	7	0	Mean								
			St. Dev.			not sample	ed after rai	n event			
			Median								
00BR01AP0176	8	4	Mean	25.53	227.00	16.17	8.90	5.27	120.00	74.65	0.700
			St. Dev.	10.57	75.77	8.16	3.95	1.92	58.88	32.88	0.337
			Median	25.05	230.50	16.55	8.55	5.44	110.00	74.60	0.550
00BR01AP0177	9	4	Mean	11.83	280.75	8.27	3.50	2.95	130.00	41.85	0.650
	-		St. Dev.	3.16	131.96	5.50	1.01	0.36	33.67	10.84	0.129
			Median	11.55	250.50	7.76	3.30	3.07	145.00	40.95	0.650
00BR01AP0208	10	5	Mean	27.24	286.40	15.84	9.52	6.58	156.00	77.14	0.840
		-	St. Dev.	14.29	108.10	8.92	5.40	1.66	88.49	38.06	0.207
			Median	20.70	316.00	10.60	6.80	6.87	120.00	56.50	0.800
00BR01AP0195	11	5	Mean	25.54	168.96	16.19	8.78	6.27	118.00	74.76	0.660
002101110170		2	St. Dev.	14.19	100.20	10.15	5.10	3.76	78.23	45.72	0.207
			Median	18.00	226.00	9.22	5.90	6.84	100.00	58.20	0.600
			1/10/1/11	10.00	220.00	,	5.70	0.01	100.00	50.20	0.000

Post rainfall event results

i ost i annan ev	cint i counto										
		Number of		DO	Fe-X	Κ	Mg-D	Mn-X	Na	NH3T	pН
DOE Station No.	Station No.	observations		mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	mg/L	pН
00BR01AP0209	1	4	Mean		0.615	0.430	0.700	0.071	2.93	0.041	6.75
			St. Dev.		0.082	0.125	0.141	0.035	0.78	0.060	0.67
			Median		0.640	0.448	0.750	0.067	2.75	0.012	7.00
00BR01AP0206	2	3	Mean		0.612	0.647	0.667	0.035	5.23	0.011	6.99
			St. Dev.		0.029	0.110	0.115	0.002	1.79	0.002	0.41
			Median		0.605	0.697	0.600	0.036	4.80	0.010	7.16
00BR01AP0205	3	4	Mean		0.228	1.365	1.125	0.061	5.53	0.023	7.64
			St. Dev.		0.152	0.312	0.359	0.089	2.21	0.026	0.42
			Median		0.161	1.280	1.250	0.019	6.05	0.010	7.82
00BR01AP0175	4	4	Mean		0.586	0.647	0.800	0.064	4.03	0.049	7.21
			St. Dev.		0.087	0.150	0.216	0.026	1.40	0.057	0.36
			Median		0.546	0.643	0.850	0.055	3.90	0.027	7.32
00BR01AP0204	5	3	Mean		0.320	0.755	0.900	0.024	2.57	0.010	7.26
	-	_	St. Dev.		0.055	0.230	0.173	0.007	0.55	0.000	0.23
			Median		0.323	0.630	0.800	0.025	2.30	0.010	7.28
00BR01AP0203	6	4	Mean		0.889	0.427	0.600	0.045	3.50	0.018	6.34
	-		St. Dev.		0.253	0.207	0.141	0.021	1.32	0.012	0.73
			Median		0.806	0.438	0.650	0.043	3.40	0.013	6.39
00BR01AP0211	7	0	Mean								
002101110211		0	St. Dev.					not	sampled a	fter rain ev	ent
			Median						~		
00BR01AP0176	8	4	Mean		0.631	0.585	0.800	0.070	4.10	0.053	7.12
002101110170	Ũ		St. Dev.		0.083	0.259	0.216	0.021	1.52	0.075	0.34
			Median		0.633	0.626	0.850	0.077	4.10	0.018	7.16
00BR01AP0177	9	4	Mean		0.929	0.428	0.750	0.054	3.93	0.012	6.68
		•	St. Dev.		0.121	0.193	0.191	0.024	1.28	0.003	0.60
			Median		0.983	0.415	0.800	0.050	4.05	0.012	6.64
00BR01AP0208	10	5	Mean		0.739	0.560	0.840	0.072	5.22	0.012	7.07
0021011110200	10	5	St. Dev.		0.206	0.300	0.230	0.006	1.23	0.007	0.36
			Median		0.782	0.640	0.900	0.071	5.70	0.012	6.91
00BR01AP0195	11	5	Mean		0.529	0.423	0.880	0.046	4.92	0.012	7.10
000101710175	11	5	St. Dev.		0.329	0.423	0.356	0.040	2.62	0.057	0.43
			Median		0.172	0.103	0.800	0.017	4.40	0.032	6.82
			wiculan		0.570	0.414	0.000	0.045	4.40	0.012	0.02

Post rainfall

i ost i unnun		Number of		SO4-IC	SS	TKN	TOC	TP-L	TURB
DOE Station No.	Station No.	observations		mg/L	mg/L	mg/L	mg/L	mg/L	NTU
00BR01AP0209	1	4	Mean St. Dev.	4.02 0.54	17.88 28.10	0.570 0.232	16.98 3.70	0.024 0.024	5.50 3.64
			Median	3.99	4.25	0.510	17.20	0.014	4.85
00BR01AP0206	2	3	Mean	5.64	18.00	0.507	16.77	0.016	4.67
			St. Dev.	1.89	19.16	0.078	2.83	0.005	0.76
			Median	4.66	9.00	0.530	16.30	0.014	4.50
00BR01AP0205	3	4	Mean	33.11	39.08	0.765	13.00	0.044	4.83
			St. Dev.	17.04	73.95	0.473	2.77	0.051	5.98
			Median	40.40	2.50	0.555	12.15	0.024	1.90
00BR01AP0175	4	4	Mean	9.02	18.25	0.523	14.73	0.022	4.95
			St. Dev.	1.56	27.84	0.194	3.37	0.018	1.52
			Median	8.47	4.50	0.440	14.80	0.014	4.30
00BR01AP0204	5	3	Mean	7.90	6.33	0.427	10.77	0.014	3.47
			St. Dev.	0.95	4.04	0.023	2.65	0.004	0.31
			Median	8.15	4.00	0.440	10.60	0.015	3.40
00BR01AP0203	6	4	Mean	3.08	6.35	0.428	16.88	0.013	9.03
			St. Dev.	1.23	2.15	0.033	4.80	0.004	8.50
			Median	3.39	6.20	0.430	16.30	0.012	6.75
00BR01AP0211	7	0	Mean						
			St. Dev.						
			Median						
00BR01AP0176	8	4	Mean	9.36	11.93	0.475	14.13	0.017	4.00
			St. Dev.	4.39	5.45	0.095	4.41	0.003	0.77
			Median	9.74	9.85	0.460	13.65	0.017	4.20
00BR01AP0177	9	4	Mean	4.28	4.10	0.423	15.93	0.015	5.00
			St. Dev.	2.14	3.08	0.060	4.15	0.002	3.68
			Median	3.93	3.70	0.435	15.15	0.015	4.30
00BR01AP0208	10	5	Mean	9.26	15.00	0.495	14.03	0.020	5.12
			St. Dev.	6.15	5.74	0.058	4.96	0.006	1.05
			Median	8.74	15.00	0.500	13.45	0.019	4.90
00BR01AP0195	11	5	Mean	8.52	4.38	0.345	11.48	0.010	3.22
			St. Dev.	5.43	3.45	0.131	6.65	0.004	1.30
			Median	8.14	3.00	0.335	10.60	0.010	2.70

Table 6. Summary statistics for bacteria, grouped by baseline and post rainfall results, Canaan River and tributaries, 1997.

Baseline results		Total (count/100mL)					E.coli			Fecal Coliform				
			(count/1	00mL)			(count/1	00mL)		(count/100mL)				
				<u> </u>		N7 1		<u> </u>	36.11	NY 1		<u> </u>	1 6 11	
	Station No.	No. obs	Mean	St. Dev	Median	No. obs	Mean	St. Dev	Median	No. obs	Mean	St. Dev	Median	
00BR01AP0209	1	9	1366	93.8	1366		48	11.3	48	10	44	5.2		
00BR01AP0206	2	2	1251	680.9	1251	2	59	5.7	59	2	52	5.7		
00BR01AP0205	3	10	1626	57.1	1626	-	90	11.7	89	10	74	9.9		
00BR01AP0175	4	10	1565	329.0	1564	-	425	390.0	414	10	125	17.0		
00BR01AP0204	5	10	1313	264.0	1286	-	33	8.7	32	9	34	4.5		
00BR01AP0203	6	10	1803	55.5	1803	_	192	16.2	192	10	116	7.9		
00BR01AP0211	7	6	1397	7.8	1397	6	96	13.5	100	6	86	10.8		
00BR01AP0176	8	10	1423	24.6	1422	10	85	18.2	82	10	74	8.8		
00BR01AP0177	9	10	1564	154.4	1564	10	72	17.4	69	10	45	12.2		
00BR01AP0208	10	10	1550	18.9	1549		319	14.2	315	10	104	13.7		
00BR01AP0195	11	10	1505	41.4	1504	10	59	9.1	62	10	40	8.2	39	
Event results														
DOE Station No.	Station No.	No. obs	Mean	St. Dev	Median	No. obs	Mean	St. Dev	Median	No. obs	Mean	St. Dev	Median	
00BR01AP0209	1	8	2371	83.3	2419		390	7.1	391	8	120	1.9		
00BR01AP0206	2	8	2419	0.0	2419		710	7.5	711	8	127	1.5		
00BR01AP0205	3	8	2323	166.7	2419	8	1073	48.2	1066	8	216	2.4	216	
00BR01AP0175	4	8	2263	271.0	2419		615	60.3	613	8	152	3.6	152	
00BR01AP0204	5	8	2163	99.4	2130	-	553	25.2	550	8	180	13.7	179	
00BR01AP0203	6	8	2371	83.3	2419	8	603	22.1	606	8	126	2.1	126	
00BR01AP0211	7		Not san	pled as po	st rainfall									
00BR01AP0176	8	8	2106	271.0	1950	8	780	53.9	763	8	157	6.7	157	
00BR01AP0177	9	8	2295	115.6	2275	8	115	17.6	111	8	51	3.6		
00BR01AP0208	10	8	2419	0.0	2419		896	16.8	898	8	147	4.0		
00BR01AP0195	11	8	2343	132.0	2419		86	25.9	77	8	46	1.6		

Ammonia (guid	eline 2.2 mg/L)	Arsenic (guid	eline 50 μg/L)
mg/L	No. of values	µg/L	No. of values
>0.21	0	>50	0
0.01 - 0.2	41	5 - 50	0
< 0.01 detection limit	37	>1-5	3
	78	< 1.0 detection limit	73
			80
Cadmium (guid	Cadmium (guideline 0.2 µg/L)		eline 1.5 mg/L)
µg/L	No. of values	mg/L	No. of values
>0.2	0	>1.5	0
0.1 - 0.2	0	0.1 - 1.5	10
< 1.0 detection limit	80	< 0.1 detection limit	66
	80		76
Magnesium (gui	deline 50 mg/L)	Nickel (guideli	
mg/L	No. of values	mg/L	No. of values
>50	0	>1.0 - 0.025	0
2.6 - 50	0	< 0.01 detection limit	80
1.0 - 2.5	25		80
0 - 1.0	55		
	80		
Nitrite (guideli		Nitrite - Nitrate (g	
mg/L	No. of values	mg/L	No. of values
>0.06	0	>1.0	0
< 0.05 detection limit	76	0.05 - 1.0	30
	76	< 0.05 detection limit	50
			80

 Table 7. Frequency distribution of results for parameters with guidelines, Canaan River and tributaries, 1997.

¹ Values and numbers of values in bold typeface are those that exceeded the water quality guidelines.

Table 7. (continued)

Sulfate (guide	line 150 mg/L)	Dissolved Oxygen (g	guideline >6.5 mg/L)
mg/L	No. of values	mg/L	No. of values
>150	0	>6.5	13
100 - 150	1	<6.5	0
50 - 100	2		13
<50	77		
	80		
Chromium (guidel		Copper (guide	line 2.0 µg/L)
μg/L	No. of values	μg/L	No. of values
5.0 - 20.0	0	>5.0	0
5.0 - 20.0	Ū	~5.0	U
2.0 - 5.0	3	2.1 – 2.5	1
0.5 - 2.0	47	0.5 - 2.0	16
< 0.5 detection limit	27	< 0.5 detection limit	63
	80		79
Lead (guidel		Zinc (guidelii	
μg/L	No. of values	mg/L	No. of values
1.6 - 2.5	1	>0.03	1
	_		_
1.0 – 1.5	1	0.01 - 0.03	15
< 1.0 detection limit	78	< 0.01 detection limit	64
Aluminum (anidalin - 5)	80	Iron (guideli	80 ne 0 3 mg/L)
pH>	0 μg/L, 100.0 μg/L when	n on (guiden	IIC 0.5 IIIg/12)
	No. of values	mg/L	No. of values
μg/L > 300	16	>1.0	4
>300	10	>1.0	4
200 - 300	18	0.51 – 1.0	50
100 - 200	24	0.3 – 0.5	14
<100	22	<0.3	12
	80		80

pH (guideli	ne 6.5 to 9.5)	Total Phosphorous	(guideline 0.03 mg/L)
pH	No. of values	mg/L	No. of values
>9.5	0	>0.03	5
6.5 – 9.5	74	<0.03	73
<6.5	6		78
	80		
	n (>15 mg/L <u>may</u> reflect	Colour (guide	eline 100 TCU)
	conditions) No. of values	TCU	No of volues
mg/L			No. of values
>15	29	>200	5
<15	49	101 - 200	22
	78	<100	53
			80
Suspended Solids	(guideline 10 mg/L)	Turbidity (guid	leline 10.0 NTU)
mg/L	No. of values	NTU	No. of values
>40	4	>10.0	3
31 - 40	0	<10.0	77
21 – 30	8		80
10 - 20	0		
<10	68		
	80		
	ne 200/100ml) ¹		ideline 200/100ml) ²
counts/100ml	No. of values	counts/100ml	No. of values
>2000	2	>350	0
1501 - 2000	3	200 - 350	13
1001 - 1500	5	<200	56
501 - 1000	3		69
200 - 500	6		
<200	50		
	69		

¹ Values for each date and site were averaged prior to determining the frequency distribution. Between 2 and 4 samples were collected per site on each sampling date.

Date	Rainfall	Date	Rainfall	Date	Rainfall
	(mm)		(mm)		(mm)
04 04	0.00	15 05	1.52	25 06	33.78
05 04	0.00	16 05	10.16	26 06	9.15
06 04	7.10	17 05	3.29	27 06	2.28
07 04	4.56	18 05	0.00	28 06	0.00
08 04	0.00	19 05	0.00	29 06	0.00
09 04	0.00	20 05	3.55	30 06	0.00
10 04	0.00	21 05	2.53	01 07	4.06
11 04	0.00	22 05	3.56	02 07	0.00
12 04	0.00	23 05	4.04	03 07	38.10
13 04	0.00	24 05	0.25	04 07	15.24
14 04	11.42	25 05	2.79	05 07	0.00
15 04	0.50	26 05	10.15	06 07	0.00
16 04	0.00	27 05	0.50	07 07	0.00
17 04	0.00	28 05	0.00	08 07	6.10
18 04	0.00	29 05	0.00	09 07	8.89
19 04	0.00	30 05	0.00	10 07	0.00
20 04	0.00	31 05	5.08	11 07	0.00
21 04	0.00	01 06	5.08	12 07	0.00
22 04	0.00	02 06	0.00	13 07	0.00
23 04	5.06	03 06	0.00	14 07	0.00
24 04	0.00	04 06	0.00	15 07	0.00
25 04	1.01	05 06	0.25	16 07	0.00
26 04	0.00	06 06	6.33	17 07	8.13
27 04	0.00	07 06	0.00	18 07	0.50
28 04	0.00	08 06	0.00	19 07	1.02
29 04	16.25	09 06	0.00	20 07	0.00
30 04	12.95	10 06	0.00	21 07	0.00
01 05	0.00	11 06	1.52	22 07	0.00
02 05	4.06	12 06	0.00	23 07	0.00
03 05	0.00	13 06	3.04	24 07	0.00
04 05	9.39	14 06	0.25	25 07	0.00
05 05	0.00	15 06	0.51	26 07	0.00
06 05	0.00	16 06	0.00	27 07	0.00
07 05	8.13	17 06	2.54	28 07	0.00
08 05	0.25	18 06	9.39	29 07	9.65
09 05	3.29	19 06	13.46	30 07	0.50
10 05	0.00	20 06	0.76	31 07	0.00
11 05	0.25	21 06	0.00	01 08	0.00
12 05	0.50	22 06	5.06	02 08	0.00
13 05	0.00	23 06	23.11	03 08	0.00
14 05	10.15	24 06	0.00	04 08	0.00

 Table 8. Rainfall recorded at the New Brunswick Department of Natural Resources and Energy station at Alward Brook, during the 1997 forest fire season.

Date	Rainfall	Date	Rainfall	Date	Rainfall
	(mm)		(mm)		(mm)
05 08	11.43	27 08	0.00	18 09	1.02
06 08	1.77	28 08	0.00	19 09	0.25
07 08	0.00	29 08	0.00	20 09	6.09
08 08	0.00	30 08	0.25	21 09	18.54
09 08	0.00	31 08	0.00	22 09	0.00
10 08	2.78	01 09	0.00	23 09	2.03
11 08	0.00	02 09	0.25	24 09	5.83
12 08	3.56	03 09	22.86	25 09	0.00
13 08	0.00	04 09	7.36	26 09	0.50
14 08	8.36	05 09	0.00	27 09	3.30
15 08	0.25	06 09	0.00	28 09	0.00
16 08	8.87	07 09	0.00	29 09	0.00
17 08	2.03	08 09	1.77	30 09	6.08
18 08	0.00	09 09	1.53	01 10	0.25
19 08	0.51	10 09	17.00	02 10	0.25
20 08	0.50	11 09	0.00	03 10	0.00
21 08	0.00	12 09	0.00	04 10	0.00
22 08	0.00	13 09	2.79	05 10	0.00
23 08	2.27	14 09	0.00	06 10	3.04
24 08	0.25	15 09	0.00	07 10	0.00
25 08	5.84	16 09	0.00	08 10	0.00
26 08	0.00	17 09	0.00		

			HARD	Í	AIXGF		CLRA		COND		CrXGF		CuXGF
DOE Station No.	Station	Date Sampled	mg/L		ug/L		TCU		USIE/CM		ug/L		ug/L
00BR01AP0209	1	18-Jun-97	39.0		125.0		75		106.0		1.4		0.5
	1	4-Jul-97	21.5	D	525.0	U	300	U	47.6	D	0.9	D	0.8
	1	31-Jul-97	12.1		153.0		120		737.0		0.9		0.5
	1	4-Sep-97	15.3	U	260.0	U	100	D	46.9	D	0.5	D	0.5
00BR01AP0206	2	4-Jul-97	19.9		245.0		100		72.5		0.5		0.5
00BR01AP0205	3	18-Jun-97	127.6		72.8		20		279.0		2.0		0.5
	3	4-Jul-97	30.9	D	1870.0	U	150	U	70.3	D	1.2	D	1.3
	3	31-Jul-97	145.9		33.7		20		342.0		3.6		0.5
	3	4-Sep-97	97.8	D	118.0	U	60	U	235.0	D	0.5	D	0.5
00BR01AP0175	4	18-Jun-97	32.6		121.0		100		93.7		1.1		0.5
	4	4-Jul-97	25.8	D	381.0	U	200	U	66.2	D	1.0	D	0.7
	4	31-Jul-97	40.3		124.0		70		120.0		1.7		0.7
	4	4-Sep-97	30.7	D	173.0	U	80	U	85.7	D	0.5	D	0.5
00BR01AP0204	5	18-Jun-97	23.0		48.2		40		59.9		0.9		0.5
	5	31-Jul-97	28.7		46.9		20		74.7		1.3		0.6
	5	4-Sep-97	26.0	D	133.0	U	50	U	71.9	D	0.6	D	0.5
00BR01AP0203	6	18-Jun-97	6.6		184.0		150		34.6		0.6		0.5
	6	4-Jul-97	5.9	D	242.0	U	250	U	21.3	D	0.6	D	0.5
	6	31-Jul-97	8.1		234.0		100		36.0		0.8		0.5
	6	4-Sep-97	9.2	U	271.0	U	200	U	46.2	U	0.6	D	1.0
00BR01AP0211	7	15-Oct-97	45.7		61.0		70		121.0		0.5		0.5
00BR01AP0176	8	18-Jun-97	33.2		98.9		100		88.0		1.1		0.5
River	8	4-Jul-97	15.3	D	261.0	U	200	U	40.4	D	0.6	D	0.5
	8	31-Jul-97	21.4		103.0		70		90.7		1.1		0.5
	8	4-Sep-97	36.7	U	200.0	U	60	D	109.0	U	0.5	D	0.5
00BR01AP0177	9	4-Jul-97	8.3		321.0		150		30.2		0.6		0.5
	9	31-Jul-97	7.3		263.0		250		19.9		0.8		0.5
00BR01AP0208	10	2-Jul-97	17.7		312.0		200		43.8		0.6		0.9
	10	4-Jul-97	14.7	D	316.0	U	250	U	46.2	U	0.7	U	0.6
	10	4-Jul-97	16.0		326.0		250		47.0		0.8		0.6
	10	31-Jul-97	30.4		97.6		60		90.5		1.1		0.5
	10	4-Sep-97	46.3	U	175.0	U	60	D	127.0	U	0.7	D	0.5
00BR01AP0195	11	2-Jul-97	13.5		279.0		200		36.4		1.2		1.7
	11	4-Jul-97	12.8	D	230.0	D	200	D	34.8	D	0.6	D	0.6
	11	4-Jul-97	15.2		226.0		200		33.8		0.7		1.5
	11	31-Jul-97	31.1		99.9		60		94.2		1.4		0.5
	11	4-Sep-97	43.1	U	52.8	D	40	D	129.0	U	0.5	D	0.5

Table 9. Comparison of baseline and post rainfall values for selected parameters, Canaan River and tributaries, 1997.

*Bold typeface values represent post rainfall * **U** = shift upwards following rain event

* **D** = shift downwards following rain event

			pН		SO4-IC		SS		тос	I	TP-L		TURB
DOE Station No.	Station No.	Date Sampled	рН		mg/L		mg/L		mg/L		mg/L		NTU
00BR01AP0209	1	18-Jun-97	7.67		15.50		2.0		11.3		0.011		3.40
	1	4-Jul-97	6.87	D	4.59	D	60.0	U	19.0	U	0.059	U	10.10
	1	31-Jul-97	7.06		2.50		2.0		16.2		0.010		1.30
	1	4-Sep-97	7.12	U	4.37	U	5.0	U	15.4	D	0.017	U	6.70
00BR01AP0206	2	4-Jul-97	7.16		7.82		5.0		16.3		0.022		5.50
00BR01AP0205	3	18-Jun-97	8.27		55.80		5.0		4.3		0.014		0.70
	3	4-Jul-97	7.02	D	7.73	D	150.0	U	17.0	U	0.120	U	13.80
	3	31-Jul-97	8.19		69.90		1.0		4.2		0.005		0.70
	3	4-Sep-97	7.73	D	41.90	D	3.0	U	12.5	U	0.031	U	2.00
00BR01AP0175	4	18-Jun-97	7.74		14.00		2.0		11.4		0.011		2.40
	4	4-Jul-97	7.25	D	8.69	D	60.0	U	17.2	U	0.049	U	7.20
	4	31-Jul-97	7.48		14.50		2.0		12.5		0.007		1.00
	4	4-Sep-97	7.38	D	7.83	D	4.0	U	12.4	D	0.016	U	4.10
00BR01AP0204	5	18-Jun-97	7.67		3.07		1.0		6.0		0.005		0.70
	5	31-Jul-97	7.57		3.26		1.0		4.8		0.005		0.60
	5	4-Sep-97	7.28	D	8.71	U	4.0	U	10.6	U	0.017	U	3.20
00BR01AP0203	6	18-Jun-97	7.02		2.20		4.0		15.4		0.013		1.50
	6	4-Jul-97	5.81	D	1.36	D	4.0	D	22.8	U	0.009	D	1.40
	6	31-Jul-97	6.81		2.16		3.0		16.8		0.013		2.10
	6	4-Sep-97	6.97	U	3.70	U	9.0	U	12.1	D	0.017	U	21.20
00BR01AP0211	7	15-Oct-97	7.57		2.13		0.2		9.1		0.005		0.60
00BR01AP0176	8	18-Jun-97	7.55		11.50		2.0		10.2		0.008		1.40
River	8	4-Jul-97	6.98	D	3.86	D	20.0	U	19.0	U	0.018	U	2.90
	8	31-Jul-97	7.32		11.40		1.0		11.3		0.007		1.10
	8	4-Sep-97	7.34	U	14.10	U	8.0	U	10.6	D	0.021	U	4.70
00BR01AP0177	9	4-Jul-97	6.16		2.09		5.0		20.9		0.012		2.10
	9	31-Jul-97	6.18		1.89		4.0		22.2		0.090		1.40
00BR01AP0208	10	2-Jul-97	6.85		4.04		8.0		19.5		0.014		2.30
	10	4-Jul-97	6.74	D	3.39	D	20.0	U	19.6	U	0.018	U	4.90
	10	4-Jul-97	6.91		3.45		20.0						4.00
	10	31-Jul-97	7.41		11.80		2.0		10.4		0.007		1.20
	10	4-Sep-97	7.47	U	17.40	U	6.0	U	10.1	D	0.019	U	4.60
00BR01AP0195	11	2-Jul-97	6.60		3.08		3.0		19.4		0.009		1.50
	11	4-Jul-97	6.73	U	3.28	U	7.0	U	19.6	U	0.014	U	2.70
	11	4-Jul-97	6.82		3.17		9.0						3.00
	11	31-Jul-97	7.37		11.30		2.0		10.1		0.006		1.80
	11	4-Sep-97	7.65	U	14.90	U	1.0	D	5.1	D	0.005	D	2.30

Station	NBDOE	General Location	Effective
No.	Reference No.	General Location	drainage
INU.	Reference no.		area (ha)
1R	00BR01AP0209	On mainstream of the Canaan River, at lower	41,437
	000000000000000000000000000000000000000	end of 'Upper Canaan River Stem' sub-	-1,-57
		watershed – water quality is influenced by	
		the six upper sub-watersheds.	
2T	00BR01AP0206	On Nevers Brook, near confluence with	12,303
21	000101111 0200	Canaan River – water quality is influenced	12,303
		by the Nevers Brook watershed.	
3T	00BR01AP0205	On Ridge Brook, near confluence with	8,613
51	000101711 0205	Canaan River – water quality is influenced	0,015
		by the Ridge Brook watershed.	
4R	00BR01AP0175	On mainstream of the Canaan River where it	62,254
	000101710175	crosses NB Route 112, near Route 885.	02,234
5T	00BR01AP0204	On Thorne Brook, near confluence with	12,04
51	000101111 0204	Canaan River – water quality is influenced	12,04
		by the Thorne Brook watershed.	
6T	00BR01AP0203	On Alward Brook, near confluence with	12,356
01	000101711 0205	Canaan River – water quality is influenced	12,550
		by the Alward Brook watershed.	
7R	00BR01AP0211	On mainstream of the Canaan River, located	87,013
	000101111 0211	downstream of the confluence of the Alward	07,015
		Brook watershed	
8R	00BR01AP0176	On mainstream of the Canaan River, located	90,000
	0001011110170	above the confluence of the Forks Stream	,000
		watershed.	
9T	00BR01AP0177	On Forks Brook, near confluence with	26,287
		Canaan River – water quality is influenced	- ,
		by the Forks Brook watershed.	
10R	00BR01AP0208	On mainstream of the Canaan River,	113,301
		downstream from Forks Brook confluence –	,
		influenced by entire upper portion of the	
		watershed.	
11R	00BR01AP0195	On mainstream of the Canaan River at	140,000
		Canaan Rapids, near the confluence to	_ , ~ ~ ~
		Washademoak Lake – influenced by entire	
		Canaan River watershed. This site was used	
		in the 1996 Washademoak Lake report.	
		In the 1770 washauembak Lake report.	

Table 10. Location and effective drainage area for sampling stations, Canaan River and tributaries,1997.

	Miller Brook		Brook		Ridge Brook	Ridge Brook I		Nevers Brook			Forks Stream	
	(10589.7 ha)		(12402.4 ha)		(8613.2 ha)		(12303.5 ha)	(12303.5 ha)			(26287.9 ha)	
	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed
Agriculture/ Occupied	5.7	0.1	525.1	4.2	2173	25.2	590.2	4.8	95.1	0.8	87.4	0.3
Wetland	614.4	5.8	594.3	4.8	147.2	1.7	693.3	5.6	1029.8	8.3	2188.7	8.3
Plantation/Thinned	2434.1	23.0	2744.7	22.1	496	5.8	1217.7	9.9	610.3	4.9	3247.6	12.4
Recent Cutover /Regeneration	639.1	6.0	405.1	3.3	411.3	4.8	2950.9	24.0	3709.7	30.0	6714.2	25.5
Sapling/Young	1060	10.0	2566.2	20.7	1640.9	19.1	1520.6	12.4	207.1	1.7	2767.6	10.5
Intolerant Hardwood	1466	13.8	1337.1	10.8	789.2	9.2	276.5	2.2	428.3	3.5	484.8	1.8
Mixedwood	2513.4	23.7	2208.6	17.8	1448.4	16.8	1759.4	14.3	1001.8	8.1	2066.8	7.9
Softwood	1338.3	12.6	1073.6	8.7	1037.5	12.0	2900	23.6	3643.3	29.5	5504.6	20.9
Pine	81.4	0.8	46.1	0.4	3	0.0	60	0.5	928.6	7.5	954	3.6
Tolerant hardwood	277.7	2.6	775.9	6.3	163	1.9	82.6	0.7	431.2	3.5	998.5	3.8
Mine/Gravel Pit	0.5	0.0	0.5	0.0	144.1	1.7	1	0.0	0	0.0	2.1	0.0
Burn	0	0.0	0	0.0	0	0.0	0	0.0	11.4	0.1	685.2	2.6
Other	159.4	1.5	125.2	1.0	153.4	1.8	251.4	2.0	260.3	2.1	586.4	2.2

Table 11. Landuse in the Canaan River Watershed (Manley 1997).

Watts Brook		Flat Rock Brook		Kelly Brook		Long Creek		Cog Brook		South Branch Canaan River		East Branch Canaan River	
(2242.8 ha)		(1644.9 ha)		(3055.9 ha)		(13827.3 ha)		(3330.5 ha)		(3402.0 ha)		(3284.7 ha)	
Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed
4.9	0.2	0	0.0	32.5	1.1	1063.6	7.7	0	0.0	1.2	0.0	0	0.0
63.7	2.8	37.8	2.3	229.9	7.5	619.3	4.5	288.5	8.7	198.4	5.8	350.7	10.7
523.2	23.3	417.6	25.4	45.6	1.5	921.1	6.7	789.6	23.7	621.3	18.3	130.2	4.0
430.6	19.2	260.6	15.8	349	11.4	642.8	4.6	253.3	7.6	1283.3	37.7	1482.2	45.1
346.2	15.4	193	11.7	295.4	9.7	3009.6	21.8	443.2	13.3	95	2.8	21.5	0.7
33.7	1.5	46.9	2.9	584.5	19.1	1216.1	8.8	572	17.2	7.3	0.2	52.3	1.6
231.2	10.3	240.9	14.6	555.7	18.2	3367.1	24.4	503	15.1	167.9	4.9	199.7	6.1
419.3	18.7	295.5	18.0	532.7	17.4	1364	9.9	374.4	11.2	848.5	24.9	904.2	27.5
45.6	2.0	10.2	0.6	51.6	1.7	22.2	0.2	56.6	1.7	65.3	1.9	73.4	2.2
108.3	4.8	119.1	7.2	310.7	10.2	1422.4	10.3	6.1	0.2	55.4	1.6	13.2	0.4
5.2	0.2	0	0.0	0	0.0	7.7	0.1	0	0.0	1	0.0	0	0.0
0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
31	1.4	23.3	1.4	68.4	2.2	171.3	1.2	43.7	1.3	57.5	1.7	57.4	1.7

	rth Branch laan		rth Branch aan		rth Branch laan	Canaan Stre	eam (Upper)	Canaan River Watershed Total	
(3844.5 ha)		(3021.0 ha)		(10233.2 ha)		(17652.2 ha)		(148092.6 ha)	
Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed	Area (ha)	% of Watershed
0	0.0	0	0.0	1.8	0.0	62.9	0.4	4643.4	3.1
1235.1	32.1	655.5	21.7	2660.7	26.0	2099.2	11.9	13706.5	9.3
37.6	1.0	0	0.0	95	0.9	1337.7	7.6	15669.3	10.6
171.2	4.5	499.3	16.5	1088.5	10.6	7450.7	42.2	28741.8	19.4
1049.3	27.3	521.5	17.3	1690.3	16.5	313.5	1.8	17740.9	12.0
265.8	6.9	317.5	10.5	443.6	4.3	350.8	2.0	8672.4	5.9
108	2.8	156.3	5.2	219.7	2.1	861.5	4.9	17609.4	11.9
581	15.1	740.3	24.5	2832.8	27.7	4054.7	23.0	28444.7	19.2
311.1	8.1	63.5	2.1	269.6	2.6	532.6	3.0	3574.8	2.4
74.9	1.9	38.4	1.3	72.2	0.7	272.5	1.5	5222.1	3.5
0	0.0	0	0.0	0	0.0	0	0.0	162.1	0.1
0	0.0	0	0.0	775.8	7.6	0	0.0	1472.4	1.0
10.5	0.3	28.4	0.9	81.5	0.8	316.2	1.8	2425.3	1.6

Discussion

The land use practices and geological features of the Canaan River watershed lend themselves to many potential sources of sedimentation, and in turn may result in an increase in water colour and turbidity. The poorly drained loam soils of the watershed are very susceptible to erosion. The lower ends of many of the tributaries tend to have gentle horizontal and vertical gradients, with many grassy bends that appear to have the ability to trap sediment before it enters the Canaan. Observations made on November 30, 2000, further strengthened this belief. At that time, sediment was noticed entering Kelly Brook and was very apparent throughout the lower portion of the brook, until it encountered the gentle, grassy bends, approximately four-hundred meters upstream of its confluence with the Canaan River, after which the discharge into the Canaan appeared to be free of sediment. If the sediment was in fact being trapped in the grasses, it can be expected that under spring surcharge conditions, most of the trapped sediment will be transported into the mainstream of the Canaan, where it may be deposited on the bed of the Canaan River, or may find its way into Washademoak Lake. In either case, brown appearance due to soil particles in suspension throughout the system could be expected.

Non-point sources of sedimentation include exposed stream banks, gravel access roads, ditch clearing, residential and commercial construction sites, agricultural fields, and forestry operations.

As previously mentioned *E.coli* counts increased dramatically on September 4. Abnormally high values were seen over the entire Canaan River system, with the exception of Station 7 (no sample recorded), 9, and 11. Increased levels of *E.coli* could be expected at stations that drained large areas of agricultural land due to the common practice of manure spreading, which typically occurs in late summer and early autumn. However, this does not explain why the increase was seen at most points along the Canaan River. It is possible that elevated *E.coli* values resulted from a few residential septic systems that were out of compliance, resulting in human waste entering the watercourse, and suggests a need for further investigation. Other possible sources of bacteria contamination include beaver colonies and the droppings of other warm blooded animals.

Conclusions and Recommendations

The water quality of the Canaan River system may be characterized as having low hardness (0 to 30 mg/l as Ca CO₃). The pH tended to be near neutral, although moderately acidic conditions did exist on occasion. Further exception was Station 3 where pH was typically above 8.0. High *E.coli* and fecal coliform bacteria levels were measured at many of the stations following a rain event. Elevated levels of aluminum and iron were found in most samples, however, due to naturally high levels of metals in New Brunswick soils, the values are not considered abnormal. Values for suspended solids were at times high, particularly following major precipitation events. Corresponding with the precipitation events, was an increase in colour and turbidity values.

Arsenic, ammonia, cadmium, fluoride, nickel, nitrite, nitrite-nitrate (NOx), magnesium, and sulfate values were all less than the protection guidelines. Dissolved oxygen concentrations were acceptable. Values for copper, lead, total phosphorous, turbidity, and zinc, were less than the guidelines, though, some slightly elevated values were noted.

For the most part, the Canaan River system appears to be a relatively stable system, but did show changes after rainfall. Due to the highly erodable soils, future development in the watershed, particularly in the lower regions of the Canaan River, has the potential to release large quantities of sediment into the watercourse, which could, over time, have an impact on the water quality of Washademoak Lake.

It is recommended that Best Management Practices (BMP) be implemented to address many of the water quality issues in the Canaan River watershed. The BMP's should address such items as access road construction, ditch clearing, site clearing, stream/river buffers, manure disposal, residential septic systems, etc. The BMP's should be a community-based initiative involving many of the stakeholders in the region to ensure widespread acceptance and adherence.

Disposal of manure should be planned so it does not precede forecasted rain events. As well, appropriate methods should be implemented to minimize potential run-off from manure-spread fields. Technical information on manure management is available from the New Brunswick Department of Agriculture, Fisheries, and Aquaculture.

To help to ensure that bacteria contamination is not being caused by domestic septic systems, the systems should be checked frequently to ensure that they comply with current operation and maintenance practices.

The source of the elevated levels of *E.coli* bacteria throughout the Canaan River watershed, and particularly in the upper undeveloped portion of the watershed, remains unknown and should be studied further in an attempt to determine the source(s) and significance.

Since the data collection phase of this project, the Canaan River – Washademoak Lake system has seen the development of a high density hog farm, an increase in forest harvesting activities, a natural gas pipeline crossing, and a major four-lane highway project that has many water crossings. The cumulative affect that these activities will have on the water quality of the Washademoak Lake – Canaan River system has yet to be determined, and should be monitored. Monitoring will allow for changes in water quality to be assessed and, if possible, for procedures to be implemented to reduce the impact.

This study provides a first look at the water quality conditions of the Canaan River watershed, and has resulted in a benchmark data set that can be used to compare with future water quality measurements in the watershed. Future development in the Washademoak Lake – Canaan River watershed has the potential to negatively impact water quality. Future study of water quality in the watershed is required to detect trends in water quality and any impacts of human related activities.

References

- Canadian Council of Ministers of the Environment (CCME). 1987. Canadian Water Quality Guidelines.
- Choate, J.S. Environmental Officer. New Brunswick Department of Environment and Local Government. Personal communication.
- International Technical Advisory Sub-Committee on Water Quality in the Saint John River (ITAS). 1980. Review and update of water quality objectives for the international waters of the Saint John River Basin.
- Manley, A. 1997. Community–Based Investigation into the Current State and Functioning of the Washademoak Lake System and the Canaan River Watershed. FRC – Forest Resource Consultants. Truro, Nova Scotia.
- New Brunswick Department of Natural Resources and Energy (DNRE). 1996. An ecological land classification system for New Brunswick (Draft).
- Ontario Ministry of Environment and Energy. 1994. Policies, guidelines, provincial water quality objectives of the Ministry of Environment and Energy.

ADDENDUM

Overview of Linear Construction Projects in relation to Canaan River and Washademoak Lake

The following information is pertinent to the report on Water Quality of the Canaan River, 1997, and its relationship to the water quality of Washademoak Lake. Two linear construction projects have passed through the areas described in the report. These include the Maritimes and Northeast Pipeline and the Fredericton to Moncton Highway.

Both projects received extensive environmental planning and regulatory input prior to construction. The proponents of both projects had numerous commitments with respect to environmental matters and reporting procedures as indicated in a series of documents such as environmental protection plans, management plans and contingency plans. Additionally, numerous conditions were imposed upon the proponents with respect to environmental performance. As well, there was a significant amount of regulatory, internal and third party monitoring or inspection. The premise or goal throughout the planning, construction and post-construction or clean-up phases was to minimize potential negative impacts on the environment. While there have been, and continue to be, issues that need to be addressed, it is not possible at this point in time to determine if there have been negative impacts.

M&NP Mainline Overview

The Maritimes and Northeast Pipeline Project (Mainline) is a 1048 km underground natural gas transmission pipeline designed to transport Sable Natural Gas from processing facilities in Goldboro, NS, to markets in eastern Canada and the New England states before interconnecting with the North American pipeline grid near Dracut, Massachusetts. The terrestrial portion is 565km of 30" diameter steel pipeline (328 km in NB and 237 km in NS). Clearing of the Right of Way was accomplished in late 1998 and early 1999 with physical construction taking place in 1999.

The project involved many different issues from an environmental point of view. Of particular concern were watercourses and associated aquatic resources. In New Brunswick, a dry or isolated construction method was used for 175 watercourse crossings. Wet crossing techniques were used in two instances, and horizontal directional drills were used for three crossings. In addition, at least 56 wetlands including areas with imperfectly drained soils were crossed. The pipeline crossed four counties. The watersheds crossed in the Canaan-Washademoak area included those for Forks Stream, Alward Brook and Canaan River.

FMHP Overview

This project involves the construction of approximately 195km of divided four lane highway between Fredericton and Moncton. This includes a 5 km fill across the Grand Lake Meadows, five major watercourse crossings, 180 regular watercourse crossings (30 of them in salmonid habitat), as well as several recreational trails, grade separation structures, resource access roads and military access roads.

The watersheds crossed in the Canaan-Washademoak drainage include Jonah Brook, Picketts Cove Brook, Starky Brook, Kelly Brook and Canaan River. The majority of construction was undertaken in 1999 and 2000.

Prepared by:

Brian McCluskey, AScT Field Operations Coordinator Project Assessment Branch June 24, 2001